
FREE FALL STUDY AND ACCELERATION DUE TO GRAVITY 

MEASUREMENT 

OBJECT 

1. Measure the free fall time of two steel balls of various diameters. 

2. Create a graph with the dependence of the free fall time on the height; calculate the 

acceleration due to gravity g and its uncertainty. Compare the result with the accepted value 

for Prague. 

 

THEORY 

When examining the free fall in the gravitational field of the Earth we firstly accept some 

simplifications.  

a) We consider the gravitational field of the Earth homogeneous. We can afford this in all situations 

where the free fall height is much smaller than the radius of the Earth (𝑅E =  6378 km). 

 

central force field    homogeneous force field 

Figure 1. Approximation of the central force field by the homogeneous one 

b) We disregard the Coriolis’ force. This force is given by the 

following formula 
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where m is mass of a body moving on the surface of the Earth, 

v is its velocity (its direction is identical with the direction of 

the g in case of the free fall – see Figure 2) and ω is angular 

velocity of the Earth’s rotation. Direction of the Coriolis’ force 

is to the East in case of a free fall on the northern hemisphere.  

The acceleration associated with the Coriolis’ force and its 

magnitude can be evaluated by 
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where the φ is latitude of the free fall place.  Figure 2. Coriolis’force and 

centrifugal acceleration 



If we suppose the maximum free fall height for our experiment to be hmax = 50 cm, then the 

maximum velocity reached by the falling body is 
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The magnitude of the acceleration associated with the Coriolis’ force for such velocity is  
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This value represents about 0,035 ‰ (per mile) of the g, so we can easily disregard it. 

c) Centrifugal force of the Earths’ rotation 

An acceleration corresponding to this force must be subtracted from the acceleration due to gravity 

calculated from the Newton’s law of universal gravitation to be able to obtain comparable results 

with our measurement. The formula for the subtraction is 
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where 𝑎g is acceleration due to gravity from the Newton’s law, 𝑎0 is centrifugal acceleration, 

G = 6.6710
-11

 m
3
 kg-1

s-2 is gravitational constant, mass of the Earth 𝑀E = 61024 kg, radius of 
the Earth RE = 6378 km, R is the distance of the body from the axis of Earth‘s rotation (Figure 2), 
T is period of the Earth‘s rotation.  

We can go around the necessity of this calculation by comparing our result with the accepted 
value of the g for Prague. 

d) We disregard the resistance of the air  

The resistance of the air is described by the empiric Newton’s relation 
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where C is a shape coefficient (for a sphere we can consider C ≈ 0.5), ρ0 is density of the fluid (for 

the air ρ0 ≈ 1.3 kg m
-3

), S is cross-sectional area of the moving body and v is its velocity.  

If we take into account steel ball of the diameter D = 15 mm, its cross-sectional area is about 

S = 177 mm
2
 and its mass is about m = 13.8 g. The resistive force for these values results in 

Fr = 5.6310
-4

 N. The weight of the ball is G = m g = 0.0138 9.81= 0.135 N. 

The resistive force for previously calculated vmax is about 0.4 % of the weight, so we can disregard 

it as well. 

 

 

 

 



Motion in the gravitational field of the Earth.  

Accepting the previous simplifications we can easily examine motion of a particle in the 

gravitational field of the Earth. The equation of motion is  
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If we consider the g vector a constant, we can simply integrate equation [1] 
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where the v0 is the particle velocity at the moment t = 0 (initial condition). From the equation [2] we 

can also integrate the position vector dependence on time. 
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where r0 is the position vector at the moment t = 0 (initial condition) 

Example: a vertical throw 

We throw a body from the place described by a position vector r0= [0, 0, h] (from the height h) with 

initial velocity v0=[0, 0, v0]. Since the acceleration due to gravity is given by g=[0, 0, -g] we obtain 

by substituting for each component in the equation [3] 
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The free fall time we can obtain by substituting z = 0 in the equation [4] 
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The experiment  

The experiment consists of releasing a steel ball from various 

heights hi and measuring corresponding free fall times τi. We 

use a variant of the Atwood’s machine for the measurement – 

Fig. 3. A steel ball (1) is held by a neodymium magnet in the 

upper part of the device. By pressing the trigger (2) we release 

the ball, which falls on an impact detector (3). The information 

about the release and about the impact is transferred to the 

timer via connectors (4) and (5). The holder of the ball can be 

repositioned up or down along a bar with centimeter scale (6). 

The screw (7) serves for releasing or tightening of the entire 

holder of the ball.  

 

Figure 3. The free fall measuring device 



Timer / counter is shown on the Fig. 4. We can select a mode of the device by the rotational 

switch (1). The fall time measurement can be performed at the position ΔtAB, the resolution of the 

measurement can be set to 0.1 s, 1 ms or 0.1 ms. By pressing the RESET button (2) we can reset the 

value on the display. The contact associated with the ball release mechanism must be connected to 

the IN START/COUNT clamp (3) and the impact sensor must be connected to the IN STOP 

clamp (4). Take care for clamp colors. The device can be turned on and off by a switch on the 

power cable.  

 

Figure 4. Timer / counter 

PROCEDURE 

1. Choose one of steel balls and measure its diameter and mass. 

2. Measure fall times τi for at least 10 various heights hi.  

3. Calculate the magnitude of the acceleration due to gravity for Prague including is 

uncertainty. 

4. Create a graph with the dependence of the free fall time on the height (approximate 

measured data by the second order polynomial).  

5. Repeat steps 1. – 4. for a ball of different diameter.  

PROCESSING OF MEASURED DATA 

According to the procedure we gained a set of data represented by hi and τi pairs. Now we must 

approximate this set by a second order polynomial 

01

2

2 aaah   .    [6] 

By comparing relations [5] and [6] we can clearly see that the acceleration due to gravity 

corresponds to  

2
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where σg is uncertainty of the g. Coefficient a1 represents the initial velocity which can be 

considered close to zero thanks to the construction of the release mechanism.  

Coefficient a0 represents the difference between the real height of the free fall and the value set on 

the centimeter scale. Since the free fall time depends also on the ball diameter (for the same position 

of the holder), it is difficult to set real free fall height. Thanks to the least squares method 

processing we can choose any clearly identifiable place for the height setup (bottom of the 

holder (8) from the Fig. 3, for example). Correctness of the resulting acceleration due to gravity will 

not be affected by that, just the coefficient a0 will be.  


