6. QUANTUM PHYSICS

The repeated contradictions between classical laws and experimental results concerning
black-body radiation, stability of atoms, atomic spectra and wave-particle duality gave
birth to modern quantum physics.

6.1 BLACK-BODY RADIATION

A body that would absorb all the radiation falling on it is called a black body. In 1890
there existed two theoretical laws describing the distribution of the intensity of radiation
of a black body versus wavelength. These laws were based on classical ideas but neither
of them was in accord with experimental findings. A law which fitted the experimental
data nicely was proposed by Planck:

27 he?

hc
A 5[ & = 1]

where [ (/1 ,T) 1s radiation intensity as a function of wavelength A at temperature 7, & is

T4, T} =

Boltzmann’s constant, ¢ 1s the speed of hight and A is Planck’s constant
h= 6626x10" " J.s

Planck assumed that the atoms that make up a black body behave like electromagnetic
oscillators that can have energies given by the formula

E = nhf
where f is the oscillator frequency and » is a quantum number. The oscillators do not
emit energy continuously but only in quanta

AE = A nhf.
A graph of the intensity of radiation from the black body versus wavelength is a smooth
curve falling to zero for long as well as for short wavelengths, and with a maximum at a
wavelength A,,. which depends on temperature 7" This dependence is expressed by
Wien’s displacement law, or —

A = (&

max

)

where constant c,= 2.898x/0” m.X.

The total energy emitted per unit of time per unit of area from a black body at

temperature 7 is called the radiancy Ry . Stefan’s law expresses the fact that radiancy Ry

increases rapidly with the increasing temperature 7, or %,
K=ol

where o = 567x107° W.m K~ “ is called the Stefan-Boltzmann constant.
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" Problem 6-1. Assuming that the intensity of radiation from the sun has its maximum for

the wavelength A__ = 51x10” 7 m at particular temperature 7' and the sun’s surface

behaves like a black body, estimate the surface temperature of the sun. Determine the
power radiated from 7 m” of the surface of the sun.

Solution:  To determine the surface temperature 7 of the sun we use Wien’s
displacement law:

‘a‘ma.xT: CO
Thus we obtain
w4
T 2.898)6107 500K
51x 107

The power radiated from 7 m” of the surface of the sun can be determined using Stefan’s
law and the temperature which we have just obtained, or

R, = o T'=567x10" *x(5700)" = 59x10" W.m"*

Problem 6-2. Temperature 7 of a metallic wire of a light bulb is 2500 K, and diameter d
of the wire is 0.1 mm. Calculate the current / through the wire, supposing that the wire
radiates energy like a black body. Losses of heat due to conduction can be disregarded.

The resistivity of the wire material is p= 2.5x10" * Q.cm.

Solution: Since the wire radiates energy like a black body, the energy radiated from / m’
per one second can be determined from Stefan’s law , or

= aT
The total energy irradiated by a wire of surface S per / second is

W=R,85=0c T'r dl
where / is the length of the wire. To keep the temperature of the wire constant, the loss
of energy per one second caused by radiation of the wire must be equal to the amount of
energy produced by Joule’s heating, or

W=RF
Thus we have

RP= o T'r dlI
The resistance of a wire of diameter d is

/
R=p 7
7[__‘_
4
Substituting for R into the equation for the balance of energies we obtain for current
= Z dT lo d
2 P

Finally we have numerically for current:
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& 1074(2500)" \F.mo-@.m-“
Problem 6-3. The average rate of solar radiation incident per unit area on the earth 13

4355 W/m’ . The distance between the earth and the sunis d=149.5x1 0° km, and the
radius of the sun is R=695 550 km. Estimate the surface temperature of the sun,
assuming that the sun’s surface behaves like a black body.

[T = 5700 K]

Problem 6-4. Determine the rate of energy radiation from a human body of area 1.8 m’
and temperature 3/ <C. Explain why people do not glow in the dark.
[P=872W]

Problem 6-5. Sensitive infrared detectors allow anti-aircraft missiles to respond to the
low-intensity radiation emitted by the target aircraft’s airframe and not to the hot
exhaust. This makes attack from any angle feasible. To what wavelength should a missile
seeker be most sensitive, if the target temperature is /7. Disregard atmospheric
absorption.

[2 = 9.99 um]

6.2 STABILITY OF ATOMS - ATOMIC SPECTRA

According to classical physics, atoms are not stable particles. Furthermore, the
continuous spectrum of the radiation that would be emitted following classical physics
considerations is not in agreement with the discrete spectrum which is known to be
emitted by atoms The problem of stability of atoms and their spectra led to the simple
model of atomic structure proposed by Niels Bohr. This model is based on the following
postulates:
1. Atoms can exist only in certain stationary states of discrete energies.
When in such a state the atom is stable and emits no radiation.
2. Stationary states are those for which the 2n multiple of the electron’s
angular momentum 1s quantized as
2w myvr, = nh
where m is mass of electron, v is its velocity, 7, is radius of the n-th orbit, nis a

principal quantum number and 4 is Planck’s constant.

3. The radiation emitted by the atom is produced when the electron undergoes a
transition from a higher-energy stationary state W, to a lower-energy state
W, . The frequency f of the emitted photon is given by the equation

W, - W,=hf
Using Bohr’s postulates, the expression for the total energy of an atomic electron
moving in the orbit described by the principal quantum number 7 1s
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where Z 1s the number proportional to the charge Ze of the nucleus (for a neutral
hydrogen atom Z=/, for a helium atom Z=2 etc.), e is a charge of an electron and &, is
a permittivity of a free space.

The quantum number 7 that labels the orbit radii also labels the energy levels. The lowest
energy level or energy state, characterised by n=1/, is called the ground state Higher
states with 7>/ are called excited states.

The energy required to remove the electron from the ground state to a state of zero total
energy is called ionisation energy The energy of the hydrogen atom in its ground state
1s -13.6 eV. The negative sign indicates that the electron is bound to the nucleus and that
the energy 13.6 eV must be provided from outside to remove the electron from the atom,
or to ionise the atom. Hence 13.6 eV 1s the ionisation energy for atomic hydrogen.
Frequencies of the spectral lines emitted by hydrogen atoms is given by the expression

F= me’ (_L* J_J
8e,h° \ ' m’

Problem 6-6. Calculate the radius of the first circular orbit and velocity of an electron
on this orbit in Bohr’s model of a hydrogen atom The permittivity of a free space

£€,= 885x107" F.m ', charge of electron e= 1602 x10" " C . mass of electron
m, = 91x10" * kg and Planck’s constant 4 = 6.626 x 10~ ** J.s.

Solution. The motion of an electron around a proton represents a central motion. In this
case the centripetal force needed to hold the electron in an n-th circular orbit is balanced
by Coulomb’s force, or

v 1 e?

r, Adegr

n

where # 1s a quantum number.
From Bohr’s second postulate for stationary states 2z mvr, = nh we can express the

velocity of an electron. Substituting for velocity into the expression for balance of forces
we obtain for the radius of the n-th quantum orbit

£ ,h
= ——en
7 me

2

Substituting numerical values we obtain for the radius of the first orbit (n=1)
r, = 0.53 x107 ' m. Finally, for the velocity of an electron on this orbit we obtain

P = = = 218 x10° m.s™'
2 m, 28 .k
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Problem 6-7. Compare the gravitational attraction of an electron and proton in the
ground state of a hydrogen atom with Coulomb’s attraction. The radmus of the first orbit
r = 0.53 x107 ' m, permittivity of a free space & ,= 885x10° 2 F.m ', charge of
electron e= 1602 x10"'° C, mass of electron m, = 9.1x10™ *' kg, mass of proton

e
Z

m, = 1837 m,, and universal gravitational constant x = 6.67 x 10" U N.ml kg *.

Solution: The attractive force between a proton and an electron is expressed by
Coulomb’s law

1 e’

2

F. =

4n-&4 'K

Substituting numerical values we obtain  F. = 821x10 ® N. The attractive

gravitational force between a proton and an electron is expressed by Newton’s law of
unmversal gravitation

Substituting numerical values we obtain F, = 3.63 x 10~ “ N From the ratio of these

two forces
o . 226 x10%
Fg
we can conclude that in Bohr’s model of a hydrogen atom the gravitational force can be

disregarded with respect to Coulomb’s attractive force.

Problem 6-8. Calculate the ionisation energy of an electron in a ground state of a
hydrogen atom.

Solution: The energy required to remove the electron from the ground state to a state of
zero total energy is called ionisation energy. To determine this energy it 1s therefore
necessary to calculate the total energy of an electron in a ground state. The total energy
W of an electron is equal to the sum of its potential #W(p) and kinetic W(k), or

W=Wp + Wik

Let us define the potential energy of an electron to be zero when the electron is infinitely
distant from a proton. Then the potential energy at any finite distance 7, is equal to the
work required to move the electron from infinity to the pomnt 7, or

5

W(p):~~£FC.df: _Z(- ¢ jdr:_ e

dre,r’ ar & 1,

2

The negative sign in the expression for Coulomb’s force in the integrand 1s caused by the
fact that a proton has a positive charge and an electron has a negative charge of the same
magnitude.

The kinetic energy of an electron is
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Wi(k)= %mvz

The term ( mv*) can be expressed from the balance of Coulomb’s force and centripetal
force

V2
"m — =
rﬂ

Solving for ( m v’) and substituting into the expression for kinetic energy we obtain
Wik)= ———

( ) e
The total energy of an electron on the n-th orbit is therefore

4
TR, = = ez mz _Iz_
e A ) n
The ground state is characterised by the quantum number n=/. Thus after substituting

numerical values into the previous expression for total or ionisation energy of an
electron we obtain

W, _,=-217x10%J= - 136eV

The conversion between electronvolts and Joules is eV = 1.602 x 107° J.

Problem 6-9. Calculate the wavelength of the radiation emitted by a hydrogen atom
during the transition of an electron from the quantum orbit m=4 to the quantum orbit
s=2. The speed of light is c=3 x 10° m/s.
Solution: The radiation which is emitted by the hydrogen atom is produced when the
electron undergoes a transition from a higher-energy stationary state to a lower-energy
state . The frequency fof the emitted photon is given by the equation

W, - W =hf

Substituting from problem 6-8 for the total energy of an electron on an n-th orbit the

expression
4
W= & | S
8, h ) n

we can obtain for the frequency of the emitted radiation the following formula

B4 8

e W\ 58 m

Substituting numerical vatues we obtain for frequency f= 6.178 x 10" 5"
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Taking into account that A = ? we finally obtain for the wavelength of the emitted

radiation A= 0.485x 10 °m.

Problem 6-10. Calculate the period of revolution and the velocity of an electron in
Bohr’s model of a hydrogen atom for n=3.

[7*: 41x107° s, v= 729kn1s'1]

Problem 6-11. A hydrogen atom is excited from a state with n=1 to a state with n=2.
Calculate the energy that must be absorbed by the atom.
[ = 102¢V]

Problem 6-12. In the ground state of a hydrogen atom, according to Bohr’s theory,
what are the angular momentum b, linear momentum p, angular velocity @ and
acceleration a of the electron. '

[ b= 11x10"* J.s,p= 2x10" “kgms ', o= 41x10% s a= 9.0x10” m.s’:]

Problem 6-13. How much energy is required to remove an electron from a hydrogen
atom in a state with a quantum number n=27

6.3 WAVE-PARTICLE DUALITY

In classical physics it is assumed that energy is transported either by waves or by
particles. The concept of waves cannot be mixed with the concept of particles.

However the situation becomes more complicated when treating atomic systems and
radiation. The wave model of electromagnetic radiation provides a good description of
phenomena such as interference and diffraction. However, to explamn the photoelectric
effect or Compton’s effect a photon or particle model is needed Similarly, the
Newtonian particle model is inadequate to describe some behaviour of atomic particles
such as electrons or neutrons. We need the idea of matter waves to explain electron and
neutron diffraction.

Photoelectric effect
The photoelectric effect is the name given to the release of electrons from a clean metal
surface when electromagnetic radiation of the proper frequency shines on it. This effect
was explained in 1905 by Albert Einstein. He assumed that the incident light consisted of
photons. A photon is a massless bundle of electromagnetic radiation which behaves like
a particle. Its energy is

E=hf=ho
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where 7 = 5}!- is the so called reduced Planck’s constant, and @ =27f.
7

The individual photons collide with individual electrons in the metal and knock them out
of the metal by giving up to the electrons their entire energy. Einstein’s equation for the
photoelectric effect, i.e. conservation of energy law for this collision of a photon and
electron, 1s

hf=E + @

where Ex . is the kinetic energy of an electron escaping from a metal surface and @ s
the energy required to remove an electron from themetal. This energy is called the work
function.
The cutoff frequency f, of the photoelectric effect is the frequency for which the
ejected photoelectrons have zero value of kinetic energy:

hf,= @

K, max

Compton’s effect
Compton’s effect is the name given to the increase in the wavelength of x-rays when
scattered by free electrons.
This effect could not be explained within the framework of classical physics. Compton
therefore assumed that x-rays of the wavelength A can be treated as a stream of photons
carrying energy and momentum. The momentum of a photon is
h -
P B hk

5]

= 7T . .
where k is a wave vector (k = 47 ). An elastic collision between an x-ray photon and a

free electron caused the photon to have its energy and hence its frequency decreased,
and its wavelength therefore increased. Compton then applied the laws of conservation
of energy and momentum in a relativistic form to the collision process and obtained a
formula for the shift in wavelength between incident and scattered photons:

M= A — 4= (1- cosgp)
myc
where A is the wavelength of the incident x-ray photon, A is the wavelength of the
scattered x-ray photon, ¢ is the scattering angle, 7, is the mass of an electron and ¢ 1s
the speed of light Provided the values predicted by this equation fit perfectly with
experiental values the particle properties of electromagnetic radiation were proved.

Diffraction of particles

Just as a photon has a light wave associated with it that governs its motion, so a material
particle (e.g. an electron) has an associated wave that governs its motion. This fact was
proved by the experiments of Davisson-Germer (scattering of electrons on a crystal of
nickel) and G.P. Thomson (diffraction of an electron beam passing through a thin film).
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Problem 6-14. a) What 1s the energy associated with a photon in the radio-frequency
region with f=/00kHz? b) What is the energy associated with a photon for the
wavelength A=500 nm? c) What 1s the energy associated with a gamma ray of frequency

f=10"° Hz.

Solution: ad a). E=hf=6610"x10° =6.6"°J
8
ad b). f:ﬁz—ix—lo—-;: 6x 10" Hz
A 500x10°

E=hf=6610"x6x10" =4x10"°J
ad c). E=hf=6610"x10°=6.6x10""J

Notice that the energy of a photon differs by 15 orders of magnitude between the radio-
frequency and gamma rays regions of the spectrum. This explains why radio waves and
gamma rays interact so differently with matter.

Problem 6-15. Electromagnetic radiation of wavelength 436 nm falls on a piece of
lithium metal in a vacuum. If the work function @ of lithium is 3.8x70 ° J , what is the
maximum kinetic energy of the emitted electrons? What is the maximum speed of the
emitted electrons? What is the longest wavelength which will eject electrons from the
metal?

Solution: From Einstein’s equation for photoelectric effect

hf = EK,max + (I)
we can express the maximum kinetic energy of emitted electrons w0
% YA
he (6.6,)C 10° 34) (3 X 1()8> /1 B
B = W = @= 7= @= 5 j= Foxt0='S J
' A B6x107° (g

The maximum speed of the emitted electrons is

2FE g /
Vinax = \/—_-Lna_x_ = 39x% 1057}!’1.5"k 4, 062//&- /4

m

€

The longest wavelength of radiation which will eject electrons from the metal is found

from condition % = @ . Thus, for the wavelength we obtain

T
O X

Hence only light of a wavelength less than 5.2x70” m has photons with enough energy
to eject electrons from lithium.
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Problem 6-16. Calculate the shift A4 in the wavelength of x-rays on free stationary
electrons as a function of the scattering angle ¢

Solution: The collision process is shown in the diagram. A photon of energy 4w and
momentum Ak is incident on a stationary electron with rest energy Wp=m, ¢’ .
The photon is scattered at an angle @ and moves off with energy A’ and momentum

o

hk'. The electron recoils with a certain kinetic energy and momentum p.. Compton
applied the conservation of momentum and relativistic energy laws to solve this collision
problem. Relativistic equations must be used since the photon always moves at relativistic
velocities, as does recoiling electron under most circumstances.

Incident photon

Ep

Electron
at rest

The conservation of total relativistic energy law:
The energy of the incident photon = energy of the scattered photon + kinetic
energy of an electron:

1

ho = ko + m, ¢t | ——— where f = i
0 Vr*"““l - ,32 -
Substituting for 4 > = 4 (1)
m, ¢

we obtain, after a little rearrangement,

a(w- o')= N 1 (2)

For the square of this equation we have
1 2

- p Ji- g

For the recoiling electron the relativistic expression for the linear momentum 1s

+ 1 3)

a’ (a) - 200"+ a)’z):

5 my v

P, = =
Ji- B

The conservation of linear momentum law for this collision 1s

(4)

nk=mk+ ¥

Ji- 8?
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For linear momentum we can also write
9 2 ¥ 2 2 ¥
P = (hk) + (hk) — 2n°kk'cos @

Substituting for p from Eq.4 and for {iz‘ = % we have

" !
2 r2 ’
M_m__o_y-aw — hz _a.)___ fe hz @ . 2h2 En_z_cos¢
Ji- B’ v

Taking into account the substitution which is expressed by Eq. 1 we obtamn

2
qu;é?: a (a)zv o'~ Za)co’cosw) (5)
Substracting Eq.3 from Eq. 5 we have

p: 2
-5 - F
This equation can be rearranged to the following form

a ¥ . I
20w »'sin 5 W 6)

From comparison of Eq. 6 and Eq. 2 we can see that

@' (- 2w w'cosp+ 20 w')=

2a’w »'sin’ ;0 afw - o)

Taking into account Eq.1 we obtain
@

o- o= 2 2a‘)a)’sin

m,C
With respect to the fact that @ = 27{% we finally obtain for the shift 44 n the

wavelength
M= a= e o (L )
m,c 2 mc

Notice that A1 depends only on the scattering angle ¢ and not on the initial wavelength

. h ‘
A The quantity A .= ——= 243x10" " m is known as Compton’s wavelength
0

Problem 6-17. The energy required to remove an electron from sodium is 2.3 e/, What
is the cutoff wavelength for a photoelectric emission from sodium. ,
| 4= sdxi0’ m

Problem 6-18. The maximum wavelength of light capable of causing photoelectric
emission from tungsten is A=2750.70"°m. Calculate the work function of tungsten and
the maximum velocity of the emitted electrons.

[@=45er,v=01x10° ms 1
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Problem 6-19. An x-ray photon of the wavelength A=1/x70" m is incident on a free
electron at rest and is scattered at right angles from the initial direction. Find the energy
of the recoiled electron.

[W. = 48x107" J|

Problem 6-20. An electron which is scattered by an x-ray photon gains energy 50 kel
during the Compton’s collision. Find the minimum energy of an x-ray photon.

[ W, = 233x107 " J]

Problem 6-21. The wavelength of yellow light 1s 589 nm. What 1s the energy of the
corresponding photons?

[E = 211eV]

Problem 6-22. A light bulb emits light at a wavelength of 630 nm. The bulb is rated at
60 W, and is 93 % efficient in converting electrical energy to light. How many photons
will the bulb emit over 730 hours.

[4.66x1026]

Problem 6-23. Find the maximum kinetic energy of photoelectrons if the work function
of metallic sodium is 2.3 e}/ and the frequency of the light producing the photoeffect 1s
3x10” Hz.

[101eV]

Problem 6-24. An x-ray photon of wavelength 0.07 nm strikes an electron head on
(a=1809. Calculate: a) the change in wavelength of the incident photon,

b) the change in energy of the photon, and
¢) the kinetic energy imparted to the electron.

[a) 4.8 pm, b) — 4lkeV, ¢) 41 keV)

6.4 WAVE NATURE OF MATTER

According to Louis de Broglie’s hypothesis not only electrons, but all material objects,
charged or uncharged, show wavelike properties. The wave which is associated with
every particle having a momentum p=my is called the de Broglie matter wave. The
wavelength of matter waves 1s

PR
myv
Principle of complementarity:
The wave and particle description of reality are complementary; both models are
required to describe the behaviour of electromagnetic radiation and atomic particles, but

the two are never applied at the same time to the same physical measurement.
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Problem 6-25. Calculate the wavelength of the de Broglie matter wave associated with
an electron which 1s accelerated by a potential difference U=1700V".

Solution: The speed of an electron can be found from its kinetic energy or

! m, v’ = eU

2 . 0" ¥x100
. el/ _ \/2x16x1 x1 50105 ms
m, 91x10™ *

The momentum follows from

Thus we have

p=mv=>54x10"" kgm/s

The wavelength of the associated de Broglie matter wave 1s

h 6.6x10” *
e _ ool = 12x10" " m

my 54x10" %

Note that this wavelength 1s of the same order as the size of an atom.

Problem 6-26. Helium atoms move at a speed of 7.63 x I0° m/s . Calculate the
wavelength of the associated de Broglie matter wave. The molar mass of helium 1s 4.0
g/mole, Avogadro’s number is 6.02 x 10°° mol”.

[;{ = 0609 x10™° m]

6.5 WAVE FUNCTION

Microscopic particles act as if certain aspects of their behaviour are governed by the
behaviour of an associated de Broghe wave which is described by the wave function
¥x,y,z,t). The wave function may be real as well as complex. The basic connection
between the properties of the wave function and the behaviour of the associated particle
1s expressed in terms of the probability density dP(x,y,z¢), which tells us that the
probability that the particle will be found in the volume dV at a certain instant of time is

dP(x, Y2, l) = ]‘\P(x, ¥, 7, Z) I 2 dv

where
f\P(x, ¥, z,l)j "= Pirw y,z).‘P*(x, z, y,l).

In this expression ¥ is the imaginary conjugated function to ¥ Thus for probability
density we obtain

av
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The total probability of finding the particle somewhere in the volume V is necessarily
equal to one, if the particle exists. This fact is expressed by the normalisation
condition:

I {‘I’(x,y,z,z) i 24V =1

Problem 6-27. Normalise the wave function ¥x) )=A sinkx by determining the value of
the arbitrary constant 4 in that wave function for — a< x< + a.

Solution: The probability of finding the particle somewhere in the interval
— a< x< + a equals one if the particle exists. This fact i1s expressed by the

normalisation condition

_jt:‘P(x) ¥ (x) dx = 1

Inserting wave function into the normalisation condition we obtain

Az_f sinkx dx = 1

Solving this integral we obtain

1
A= + —
Ja

Thus for the wave function we finally have

1
Yix) = + — sinkx
Va

6.6 UNCERTAINTY PRINCIPLE

It 1s impossible to measure simultaneously both the position and the corresponding
momentum of a particle with complete accuracy:

AxXAp= h

where Ax and Ap are inaccuracies in the position and momentum of the particle,
respectively. The uncertainties in energy and time are related in the same way as are the
uncertainties in position and momentum, or

AE Atz h

Problem 6-28. An electron is accelerated by voltage U=12V. Assume that you can
measure its speed with a precision of /1.5 % . With what precision can you
simultaneously measure the position of the electron?
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Solution: The velocity of an electron can be found from its kinetic energy

- 19
. \/ZeU: \/le.mo X12 s 10f e

m 91x10™ *

e

The uncertainty 1n its velocity is therefore
Av=15%v=3.07x 10" m/s
We can find the uncertainty m the linear momentum of the electron as
Ap=m Av= 9.Ix107"x 3.07x10°= 2.79 x 107° kg.m/s

Thus from the uncertainty principle Ax Ap> h we have for the uncertainty in the

posttion of the electron
A 66x107 7%

T Ap  279x10°

= 235x10 ¥ m

Problem 6-29. Calculate the uncertainty in the energy of a m-meson. The lifetime of this
particleis 7= 2.5x 10°s.
[AE = 26x10" 7 J]

Problem 6-30. A bullet of mass 50 g travels at a speed of 300 m/s. The uncertainty in the
velocity 15 0.01%. Calculate the uncertainty in the position of the bullet if the position 1s
measured simultaneously with the speed.

Ax = 3x10*32m]

6.7 SCHROEDINGER’S EQUATION

Postulate: To every wave function corresponds a unique state of motion of the
particle. In fact the wave function contains all the information that the uncertainty
principle allows us to learn about the associated particle. Schroedinger’s equation allows
us to find the wave function ¥{x,y,z ¢ if we know the force acting on the associated
particle by specifying the potential energy ¥ corresponding to this force. In other words
the wave function 1s a solution to Schrodinger’s equation for that potential energy.
Time-dependent Schroedinger’s equation:

L Oo¥x,y,z,1 A2
zh___(_az_ﬁ_): A > A¥(x, y,2,0) + V(x,3,2,1) ¥(x, y,2,1)

Provided that the potential energy V does not depend explicitly on the time ¢ the wave
function can be written as

W(r.0) = wir) Q)




For this case we obtam the so called time-independent Schroedinger’s equation:
- 2m ”
Ay (F)+ ;T(E* Vw({@)=0

The functions z;f(?) are called eigenfunctions. Wave functions are always represented

by a capital letter ‘P(F , Z), eigenfunctions are represented by a lower case letter l,u(?) . To

be an acceptable solution (in the one dimensional case) an eigenfunction and its
denivative are required to have the following properties:

dy(x

w(x) must be finite : Z( ) must be finite

%
| dy(x) |

w(x) must be single valued 4 must be single valued

X
| dy(x) -

w(x) must be continuous e must be continuous

X

Acceptable solutions to the time-independent Schroedinger’s equation exist only for
certain values of energy which are called eigenvalues of potential A particular potential
has a particular set of eigenvalues.

Problem 6-31. Consider a particle of mass m and total energy £ which is moving from
the region x<0 toward the point x=0 at which the potential ¥'(x) abruptly changes from 0
toVy (see Figure). Find the probability density distribution. The energy of the particle is
less than the potential height.

V=VO

V=0

x<0 until it reaches point x=0, where it is subjected to a force of infinite magnitude:
d :
F == L mF - oo
dx #= 0
Thus, according to classical mechanics, the patticle cannot enter the region x > 0. To find
the probability density distribution we must find the eigenfunction of the time-

independent Schroedinger’s equation.
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This equation is solved separately for each region of variable x. Then the eigenfunction
valid for the entire range of x is constructed by joining the two solutions together at x =
0 in such a way that the eigenfunction and its first derivative are everywhere finite, single
valued and continuous.

For the step potential, which is shown in the Figure, the x axis breaks up mto two
regions:

V=20 for x<0
and

V="V, for x>0

In the region where x <0 (left of the step) the eigenfunction is a solution to the time-
independent Schroedinger’s equation:

dw 2m
+ —Ey=20
o ow Y

| [2mE
Denoting k= __;%@

the solution of the Schroedinger’s equation is

p(x)= A& + Be 'h* (1)

In the region where x > @ (right of the step) the eigenfunction is a solution to the time-
independent Schroedinger’s equation:

dv 2m
el O
. m,
Denoting K, = \hT(VO = E)

the solution of the Schroedinger’s equation is
w(x)= Ce™” + De” ™ )

The arbitrary constants 4, B, C and D must be so chosen that the total eigenfunction and
its derivative are everywhere finite, single valued and continuous. Consider first the
behaviour of (k) as x—» +oo In this region of the x axis the general form of  yf(x) is
given by Eq. 2. Inspection shows that it will generally increase without limit as x— +,

because of the presence of the first term Ce™* . In order to prevent this, and keep /%)
finite, we must set the constant in the first term equal to zero. Thus we have C = 0.
Single valuedness is satisfied automatically by these functions. To assure the continuity of
w(x) we have to consider the point x=0. At this point the forms of y1x), given by Egs. 1

1 d ' .
and 2, must join in such a way that y(x) and —dz are continuous.
%




Thus we obtain

A+B=D 3)
A-B= ﬁD 4)
Ky
Adding and subtracting Eqs.3 and 4 gives
AZB(H 1&) 322( i l_k_j
2 k, 2 k,
Thus the eigenfunction for the step potential and for energy of the particle £< Vo 1s:
x <0
D ik\ ik, x D( ik) ik x
) = = 1+ —2le '+ = 1- —2]e 5
yix) 5 ( k) 5 K )
x=0
y/(x) = De

The presence of the one remaining constant [ reflects the fact that the time-independent
Schroedinger’s equation is linear in yfx), and so solutions of any amplitude are allowed
by the equation.
Consider now the eigenfunction of Eq.5. Using the formula

™ = coskx + isinkx

the eigenfunction given by the Eq.5 can easily be rewritten into the form

w(x)= Dcoskx+ D %—sin k x
1
The eigenfunction is a real function of x 1f we take D real. In the top part of the figure
the eigenfunctions are illustrated. The bottom part shows the probability density
distribution. This part of the figure reveals a feature which is in sharp contrast to
predictions based on classical physics.
Although in the region x = 0 the probability

Bt
v ensity

/\/\/\x yy' = D& De ™= D¢
0

decreases rapidly with increasing x, there is a finite

vyt probability of finding the particle in the region x>
0. In classical mechanics it would be absolutely
\ impossible to find the particle in this region. This
phenomenon, called penetration mto the classically
0 X forbidden region, is one of the most striking

predictions of quantum mechanics.

Problem 6-32. Consider a particle of mass m inside an infinite square potential well, see
Figure. Find the eigenfunctions and probability density distribution for quantum numbers
n=1 2and3.
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Solution: The infinite square well potential is written as
for l X [ > a V300

v for |x|(a P=g

This well has the feature that it will bind a particle
+00 too with any finite total energy. In classical mechanics,
any of these energies are possible, but i quantum
mechanics only certain discrete eigenvalues are
allowed. In the region inside the well the behaviour
of the particle is described by Schroedinger’s
equation:

dw 2m
AV, Mpy=0
dx? h* "

Denoting k=, /2ZE (D

the solution of the Schroedinger’s differential equation is
w(x)= Asinkx+ Bcoskx (2)

To find the value of the eigenfunction for x=+u we use the fact that in this case the
potential ¥ goes to infinity. We can write Schroedinger’s equation in the following form

d’y 2m 2m
e A
2
Dividing by y and denoting > = ' wehave
%
v dmy, dmy
7 A R

Since for x=+a the right side of this equation goes to infinity

@) = w(-a) = 0
Applying this boundary condition to eigenfunctions of Eq.6 we have for
X= =g 0= — Asinka+ Bcoska (3)
and for
X 0= Asinka+ Bcoska (4)
Addition of Eqs. 3 and 4 gives
2 B coska =0 (5)

Since ka=0 we see that coska=0 (supposing that ka#fzz, where 7 is an odd number).

Consequently from Eq. 5 we see that constant B must be equal to zero, B=0.

However, constants A and B in the expression for eigenfunction cannot both equal zero,
for then the eigenfunction vanishes everywhere and the eigenfunction would be of no
interest, because the particle would not be in the box. Therefore 4 must be different
from zero, or A=0. Thus for the points x=+ the eigenfunction 1s

w= Asinka= 0 ©)




Since A0 we have

sinka = 0
and consequently we obtain for allowed values of &

k= %g where 7 is an even number. (7D
Finally we can write for eigenfunction

.. = Asin> x ®)

2a
where 7 is called the quantum number.

We can now substract Eq.3 from Eq. 4. Thus we obtain
24sinka= 0 ©)
Since ka=0 we see that sinka=0 (supposing that ka;«f~n—275, where » is an even number).

Consequently from Eq. 9 we see that constant 4 must be equal to zero, A=0.

However, constants 4 and B in the expression for eigenfunction cannot both equal zero,
for then the eigenfunction vanishes everywhere and the eigenfunction would be of no
interest because the particle would not be in the box. Therefore 5 must be different from
zero, or B=0. Thus for the points x=-7u the eigenfunction is

w = Bcoska= 0 (10)
Since B0 we have coska = 0 and consequently we obtain for allowed values of &
k= %75 where 7 1s an odd number (1)
a
Finally we can write for the eigenfunction
Vo = Bcosﬁzx. (12)
2a

Thus we see that we have obtained two classes of allowed solutions of the time-
independent Schroeinger equation for particle confined in the well. To find the constants
A and B which figure in the expression for the eigenfunctions we have to use a
normalisation condition. Thus for the eigenfunction given by Eq. 8 we have

A’ _[ sin® kx dx = 1

Solving this integral we have

1
A= 3 —
Ja
The constant B, for the eigenfunction which is expressed by Eq.12, 1s obtained in the
same way, or

sz cos? kx dx = 1

Solving this integral we have

Bs

1
i e
Va

115




Since the probability density is equal to the product of the wave function times the
imaginary conjugated wave function we can choose the positive sign in the expression
for constants 4 and B. Substituting for 4 and B into Egs.8 and 12 we finally obtain for
the eigenfunctions

v = —sin™% x n=2,4,6,... (13)
' \./E a
1 nr
= —CO$— X n=133,... 14
Y o Ja 24 (14)
The probability density is therefore
. 1, ,nxw . 1 , 07T
VevenV even = — S X VoidVoaa = —CO5 - X
a 2a a 2a

The eigenfunctions of the particle in the infinite square potential well for the quantum
numbers n=17,2 and 3 are shown on the left side of the following figure, and the
corresponding probability distributions are shown on the right It is seen that the
probability distribution differs for different quantum numbers. Thus, for example for the
state described by the eigenfunction y; the particle will with the gratest probability be
found in the centre of the well. Conversely for the state described by the eigenfunction
v, the probability of finding the particle in the centre of the well equals zero. These
conclusions are in a sharp contradiction with presumptions made by classical mechanics.
The dashed curves in the right side picture are the predictions of classical mechanics.

W3 Wy
W/\ -------------------- s
PR
W/\ fo o i meie i m nim 518 B e RIS o
Wy ) Vi \V;
0 0
a +a -a +a

Problem 6-33. Find the allowed values of energy for quantum numbers #=1,2 and 3 for
an electron which is confined in an infinite square potential well for the case when the
well has: 1.) microscopic dimensions a=10""m and

2.) macroscopic dimensions a=/0" m.
The mass of an electron is 9. /x/0°* kg, Planck’s constant is 6.6x10”* J.s.

Solution: To find the allowed values of energy for an electron which 1s confined n an
infinite square potential well we can use the results obtained in Problem 6-27. When

solving Schroedinger’s equation we denoted k = ‘I—Z%ZE For k we have also obtained
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nrx 4
K= — where # is a quantum number.

2a
Combining these two equations we obtain for the allowed values (eigenvalues) of energy

2
ntr *h

E=L
8ma’

Substituting for A = —2]1— and using the conversion relation / eV'=/ 0"° J we obtain for
7T

the allowed values (eigenvalues) of energy for:
1.) a well of microscopic dimensions:

E1:8.5 eV E2:34 eV E3:76.5 eV
2.) a well of macroscopic dimensions:
E=8.5¢107° eV E;=34x107° eV  Es~76.5x10"° eV.

It is seen that if the dimensions of the well are macroscopic in comparison with the
dimensions of the region where the electron is likely to be, then the difference between
the energies of the two adjacent energetic levels is so small that it can be hardly detected
(in our example of the order / 0'° eV). We can therefore suppose that the energy of an
electron changes continuously. We can also say that the energy is not quantised. On the
other hand, if the dimensions of the well are comparable with the dimensions of the
region in which the electron is likely to be ( say / 0% m) then the changes of energy on
two adjacent levels are detectable (electronvolts) and thus we see that the energy is
quantised.

Problem 6-34. Consider a particle of a mass m tunnelling through the potential barrier,
see Figure. The energy £ of the particle is less than the height V5 of the barrier. Find the
eigenfunctions in the different regions of the potential and plot the probability density
distribution. Evaluate the transmission coefficient 7 through the barrier.

Solution: The potential barrier can be written as follows:

V=", for 0<x <a
v V=0 for x<0 or x>a
We suppose that a particle is in the region
x< 0 and it is moving along the x axis to the
right. The height of the barrier 1s greater
than the energy of the particle. According to

E i j - classical mechanics the particle cannot
AA reach the region x > a. However quantum
\ mechanics predicts that there is a certain
y . probability that the particle will be
0 a x  transmitted into the classically forbidden
region X > a.
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To find the eigenfunction, Schroedinger’s equation

dw 2m

—“d—)‘c‘;-'F —f-lz—(E“‘ VO)K//ZO | (1)
breaks up into three separate equations for three regions:

x <0 left of the barner

0<x <a within the barrier, and

x> a. right of the barner.

In the regions to the left and to the right of the barrier, Eq.1 changes into the equation
for a free particle of total energy £:
d*w 2m
—t —FEywy=10 2
st 4 2
The solutions of this differential equation of the second order with constant coefficients
are

v, = Ae" "+ Be % for x <0 3)
and

W, = A"+ Be tt* for x5 4)

_2mE
ko= 2 4 &)

In the region inside the barrier (0 <x < a) Eq.1 can be rewritten (because £ < V) mto
the following form:

where

d’y 2m
dx;g][ - hg (VO— E) WH = 0 (6)

: 2m .
Denoting ke = \/%Z—(VO ~ E) (7)

the solution of Schroedinger’s equation is

= A st Bzew (8)
The arbitrary constants A;, 4, As B), B, and B; must be so chosen that they make

dy(x . _ L
wix) and JZ%('—)- continuous at points x=0 and x=a. Since we are considering the case
X
of a particle incident on a barrier from the left, in the region to the right of the barrier

there can be only a transmitted wave, as there is nothing in that region to produce a
reflection. Thus we can set Bs=0.

dy{x
In matching y1x) and *—Z—(—) at points x=0 and x=a, four equations for the arbitrary
%
constants 4;, 4,, A3, B;, and B, will be obtained. Thus we have:
wi (0)= wu (0) yir (@)= i (@)

1+ B;=4;+B; ©) AE 21 Be™ = A (10)
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dW{(O):dV/H( 0) dWU(“):dV/JU(a)
dx dx dx dx

ki(1-B)=k(A4,-B) (11) ~ A8 ¥+ Bg™ - %—Aze""'“ (12)
. 2
Equations 9-11 can be used to evaluate 4,, 45, B;, and B, in terms of A;. The value of 4;
determines the amphtude of the eigenfunction and it can be left arbitrary We can
therefore assume that 4,=1.
Transmission coefficient 7 through the barrier is defined as the ratio of a probability
flux transmitted through the barrrier into the region x > a to the probability flux incident
upon the barrier. The probability flux incident on the barrier 1s defined as
]inc - ﬁlAl'z
m

Similarly the probability flux transmitted through the barrier is

- hk}
: m
Thus for the transmission coefficient we have

I

tran.

|4l

T dys _ ! AB‘z
trans
It is therefore seen that to determine transmussion coefficient 7' it 1S necessary to
determine constant 4. This constant can be determined from Eqs 9-12 using Cramer’s
rule. To do this we rewrite Eqs. 9-12 into the following form

By - A; - B, + 0 = -/

-k B, - k, A, + kB + 0 = -k
0 - e " B, - ¢l A, = 0 (13)
0 + "4 - B, v B g 4, = 0

2

The determinant of the system is the fourth-order determinant

1 ~1 =1 0
k -k +k 0
DS = 0 e koa ekza o eikla

0 e _ g

Evaluation of this determumant gives

Ds= ™ { 2k, (ekza + e kz“) + i(ekza - & kﬂ)(f—;—éﬁﬂ




To determine the constant A; we have to evaluate the determinant in which the fourth
column in the Ds is substituted by the right side of the system of equations 13, or

1 -1 -1 -1
-k -k +k -k
0 e Rt g™

0 e ™ - 0

:4k1

DA3:

Thus for constant 45 we have
4. - D 4k, ik,e” ™
3 = - .
Ds (i, + ik,) ~ € (ki)
The transmission coefficient through the barrier is therefore
4klk;

(k7 + K2) sinb k,a+ 47K,

T= |4 =

Since for most situations k,a ) 1 the expression for 7' may be simplified to the following
16 k2k2 - z\} m(Vy— E
form T- —2 2 226"2’“2“:758 o & (14)
(k7 + K7)
The expression for 7 makes a prediction which is very remarkable from the point of view
of classical mechanics. It is seen that a particle of mass m and total energy £, incident on
a potential barrier of height Vo and finite thickness a has a certain probability of
penetrating the barrier and appearing on the other side. This phenomenon is called a
tunmel effect and the particle is said to tunnel through the barrier. An inspection of Eq.
14 shows that the probability that the particle penetrates through the barrier is nonzero

only in the case of microscopic dimensions of the barrier (z 1077 m) and for

microscopic particles.

The tunnel effect is responsible for the emission of o particles in the decay of radioactive
nuclei, for nuclear fusion, for the functioning of the tunnel diode, etc. The probability
density distribution may be drawn using the eigenfunctions which are expressed by Egs.
3.4 and 8. This distribution is shown in the following figure.

*

VAT

Problem 6-35. Find allowed values of energy and probability distribution for a free
electron.
[All values of energy are allowed]

[w we=const]
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6.8 OPERATORS - EXPECTATION VALUES

An operator maps a function onto a function, or

O= Ay
If an operator acting on a certain function produces a scalar multiple of the same
function, or

Ay, = A4y,
we call the function y;, an eigenfunction and the scalar 4, an eigenvalue of the
operator A.

Postulate: To each dynamical variable there corresponds a Hermitian operator
whose eigenvalues are possible values of the dynamic variable.
The set of eigenvalues 4, of operator A4 is called the spectrum of this operator. This

spectrum can be purely discrete, or continuous.
As an operator of coordinate X we take the multiplication by the coordinate, or

X\WH = xﬂl//?l
An operator of linear momentum p 1s
p= — IhV

where 7 13 an imaginary unit, V is a del operator and /4 is Planck’s constant.
An operator of kinetic energy F is

E = ih»—?—
ot
An operator of total energy, or a so called Hamiltonian operator, is
2
g--T vy
2m
The time-independent Schroedinger equation in the operator form is
Hy=E 7

The expectation value 1s the average of the observed values which characterize, for
example, the position at time 7 of a particle associated with the wave function ‘P(x, z), or

%= T W (x,1) X W(x, 0) dx

The same expression would be appropriate for evaluating the expectation value of any
physical quantity, if we substitute operator X by an operator of this quantity.

Problem 6-36. Find an operator b of the angular momentum of a particle.

Solution: The wvector of angular momentum b in classical physics 1s defined as
b= 7 x p.In quantum mechanics the operator of angular momentum is expressed by an
operator which 1s defined in the same way as angular momentum in classical physics, or
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b = { rx ﬁ]
where p is an operator of limear momentum
p= - ihvV
and Fis a position vector with coordinates x, y and z Since for an operator of

coordinate X we take the multiplication by the coordinate x (and similarty for operators
 and Z we take the multiplication by the coordinates y and z respectively) we can write

A i 3 k
b= x y z
_al tal _al
ox ay dz

Thus for the components of the angular momentum operator we have

Problem 6-37. Consider a particle of mass m nside an infinite square potential well, see
problem 6-32. Evaluate the expectation value of co-ordinate X using the eigenfunction

1 nx
= —=C08—X

Ja 2a

Solution: To evaluate X we have to apply the equation for expectations values

%= [ () X () dx
to our case, i.e., to a situation where a particle is confined 1n an infinite square potential
well — a< x < a. Thus we obtain

X = J. —I—-(COSHX} x._l_—[cos—n——ﬂ——)cj dx= ‘1' J XCOSZ—n—yix.dx
AN ad, ¥

Ja 2a a

Note that the integrand is the product of cos{ £ x} . which is an even function of x,
a

times x itself, which is an odd function of x. The integrand is therefore an odd function
of x. From this conclusion it follows that
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I A ni
% = — J. xcos? —x.dx=0
a-, 2a

because the integral of an integrand which 1s an odd function of the variable of
integration is zero, if the integration is taken over a range which is centred about its
origin.

Problem 6-38. Find the operator b’ofa square of angular momentum of a particle.

.
X (e oY A o 0
b= — A4l z—— y-—J +lx—=z—| + | y—= X

oy 7oz oz  Ox) ox Oy

Problem 6-39. Consider a particle of mass m inside an infinite square potential well, see
problem 6-32. Evaluate the expectation value of momentum p using the eigenfunction

- - (Coszl——x\‘ eiil J
v Ja " 2a )
[ p= O]

7. NUCLEAR PHYSICS

The nucleus of any nuclide consists of nucleons. Nucleon is the generic name given to
the protons and neutrons in the nucleus.
The mass number A gives the total number of neutrons and protons in a nucleus.
The atomic number Z gives the number of protons in a nucleus.
The neutron number N gives the total number of neutrons in a nucleus.
In agreement with these definitions we can write
A=Z+N
Nuclides can be represented by the following symbols:

4X X X x4

where X stays for a chemucal symbol.

The isotopes of a given element have the same number of protons in the nucleus but
different numbers of neutrons.

The radius of the nucleus of mass number 4:

~15 44
R=15x100" 47 m
Nuclear masses are given in atomic mass units #,

Tu=1661x10""kg.

One atomic mass unit is a mass equal to one-twelfth of the mass of a carbon C,’ atom.




Nuclear binding energy is the energy required to tear a nucleus apart into its constituent
separate protons and neutrons

E=Amc?
where
Am = [Zmp +(A'Z) mn] 'Mnucleus

A strong nuclear force is a short range, charge independent force which holds the
nucleus together, despite the strong electrostatic repulsion between the protons mn the
nucleus.

Natural radioactivity is a process in which some atoms existing naturally on the earth
spontaneously emit alpha, beta and gamma rays and change into other kinds of nuclei.
Alpha particles are nuclei of helium He; | beta particles are electrons, and gamma rays

are extremely high-frequency electromagnetic waves.
The exponential decay law expresses the number N of radioactive nuclei present at
time 7 as a function of the number of radioactive nuclei present at time =0

N= Ng e"’”
where 1 1s the so called decay constant.
The half-life 7 is the time required for half the nuclei in a sample of a particular species
to decay radioactively. The relationship between the decay constant and half-life is

0.693
A= ——
T
A radioactive series is a set of radioactive nuclides decaying successively into each other
by alpha decay (and/or other decay processes). The equilibrium condition for the number
of nuclei N, of the parent and the number of nuclet N, of the daughter 1s

where 7; and 7, are the respective half-lives.
Nuclear activity is defined as the number of disintegrations of a particular species per
second. The unit of activity is 1 becquerel (abbr. Bq):
1 Bq = 1 nuclear disintegration per second.
The absorbed dose is the energy absorbed by a given mass of material. It 1s measured 1n
grays (abbr. Gy):
1Gy=1Jkg

Relative biological effectiveness RBE is a measure of the relative biological damage
produced by equal doses of different kinds of iomising radiation.

The standard unit for measuring the actual biological damage to be expected from
radiation 1s 1 sievert (abbr. Sv):

absorbed dose in sieverts = {(absorbed dose in grays) x (RBE).

124




Alpha decay is the process of emission of alpha particles from a nucleus. As a result of
this process the atomic number Z is reduced by 2 and the mass number 4 is reduced by
4. This nuclear reaction is described by the equation:

X; > Y/ v He

Beta decay is the process of emission of electrons from a nucleus which is described by
the following equation

4 4 4]
Ao Yz, ¥ &5

During this process the mass number 4 stays the same and the atomic number Z is
increased by one.

Since a gamma ray has no mass or electric charge, gamma decay has no effect on the
mass number 4 or on the atomic number Z of a nucleus.

In any nuclear reaction the following quantities must be conserved:

a) number of nucleons b) charge
c) total relativistic energy d) hinear momentum
e) angular momentum f) parity.

HNuclear fission is a nuclear reaction which consists in breaking up a heavy nucleus into
two nuclei of intermediate masses, together with the release of two or more neutrons and
large amounts of energy.

Nuclear fusion is a nuclear reaction in which two light nuclei are combined to form a
heavier nucleus, accompanied by the release of large amounts of energy.

A chain reaction is a reaction which results in the rapid build-up of energy which occurs
in a nuclear bomb when the multiplication factor exceeds unity and the number of
neutrons producing fission at successive stages of the reaction increases exponentially.

Problem 7-1. Compare the size of a uranium nucleus with that of a hydrogen nucleus,

Solution: Since the radius of a nucleus is given by the following expression

R=15x10"" A%

we have for the ratio of the radii of the two commonest isotopes of uranium and
hydrogen '

l
R(UZ) 15x10°" x(2381)/é .
R(H!)  15x107 x (1)
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Hence the uranium nucleus has a radius about six times that of a hydrogen nucleus. The
volume of a uranium nucleus 1s 238 times larger than the volume of a hydrogen nucleus,
since the volume depends directly on the mass number 4.

Problem 7-2. An alpha particle He, with kinetic energy Ex=>5.3 MeV heads directly
toward a nucleus of gold Au); at rest. How close does the alpha get to the centre of the

gold nucleus before it momentarily comes to rest and reverses its course. Neglect the
recoil of the massive gold nucleus.

Solution: To solve this problem we use the conservation of energy law. Initially the total
mechanical energy of the system of two interacting particles is equal to the kinetic energy
of the alpha particle Fx=5.3 MeV. At the moment when the alpha particle comes to
rest, the total mechanical energy of the system is equal to the electrostatic potential
energy F, . Since total energy is a conserved quantity we can write

EK: Ep
Oor
EK: 1 Qa QAu
4dr g, d

where the charges of the alpha particle and the gold nucleus are O, =2e and Q4. =79
respectively, and d is the distance between the centres of the two particles. Solving the
previous equation for distance we obtain

2
2x79x(l6x10" "7
g Qe Qun 5 ( y ) 5= 429x107“ m
dr e, E,  47889x107 "x53x10"x L6 x 10~

Problem 7-3. Calculate the binding energy of a deuterum atom. The mass of a
deuterium atom is 2.07/4102 u, the mass of a hydrogen atom 1s /.007825 u, and the mass
of the neutron 1s 7.008665 u.

Solution: The total mass of the nucleons of the deuterium atom 1s

1.008665u + 1.007825u = 2.016490u

The mass defect which is given as the difference between the sum of the masses of the
nucleons forming a nucleus and the nucleus itself 1s therefore

Am = 2.016490u - 2.014102u = 0.002388u
The binding energy 1s

E=Amc = 0.002388 x 1.66053x 107 x (3x 10°)° = 3.5688 x 107 J
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Problem 7-4. A sample of Kr gas contains 2.00 x 10° atoms of Kry; . What is the decay
constant for Kr. At a time #=/1.2 hours later, how many Kry' remain? [The half-life
of Kr;® is 2.8 hours].

Solution: The decay constant is
-1
_ 0693 0693 6.88 x 10" 5
T 2.8 x 3600

The number of atoms present after /7.2 hours 1s

N=N; e =200x10"x e 688x1077 x112x3600 _ 1 94 + 10" gtoms.

Problem 7-5. Calculate which amount of radium Raj’ and radon R’ is in

equilibrium with one gram of uranium U2} . The half-life of uranum 7, = 4. 4x10°

years, the half-life of radum 15 ©» = 1590 vyears and the half-life of radon 1s
73 = 3.825 days.

226

Solution: Radium Rag, 222

and radon Rn? are daughters in the radioactive series which

begins with parent uranium UZ®. The equilibrium condition for the number of nucle:
N, of the parent and the number of nuclei N, of the daughter is

N, ¥’

]Vl T
where 7, and > are the respective half-lives. Thus for the number of radium atoms we
can write

2

¥
N,= N, —
Tl
and for the number of radon atoms we have
.
N, = N, el
.

The mass m of »n atoms of a given element can be expressed as
m= -—n

where M is the molar mass of this element and N is the Avogadro number.
Consequently each kilogram of U2 contains

n, = 602 . 10% atoms.
238
Finally for the mass of radium in equilibrium we obtain
126
mzzyinlﬁz 226 . 602 x10 15909:3.4x10‘7kg
N 7 ¢ 602x10 238 4.4 x 10 ;
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For the mass of radon in equilibrium we have

26
M, Ti 222 602x10 3825 20 %10- " ks

3 N & o 26 9
T, 602x10 238 44 x10° x 365

Problem 7-6. The isotope radium-226 undergoes alpha decay. Write the reaction
equation and determine the identity of the daughter nucleus.

Solution: From the periodic table of the elements (see appendix) we find that the atomic
number of radium is 88. So the reaction will appear as follows:

Ral® > 7+ He)
The atomic number A of the daughter nucleus must be 222, since the mass numbers must
be equal on both sides of the arrow. By the same reasoning, the atomic number Z must

be 86. From the periodic table we find the element radon (Rn) has Z=86. The daughter
nucleus is radon Rn222 and the reaction is therefore:

226 222 4
Rag — Rng + He,

Problem 7-7. The isotope iodine-73/ undergoes beta decay. Write the reaction equation
and determine the identity of the daughter nucleus.

Solution: From the periodic table we find that the atomic number Z of iodine 1s 53.
Therefore we have
2 7+ &8

Since during this process the mass number 4 stays the same and the atomic number Z 18
increased by one we find that the daughter nucleus is xenon Xe/3/:

131 131 0
I — Xey + e

Problem 7-8. The isotope U;° undergoes 4 alpha decays and 2 beta decays. Write the
reaction equation and determine the identity of the daughter nucleus.
Solution: The reaction can be described by the following equation:
UZ® > 4xHe +2xe’ + X,
From the conservation of mass law we have
238 =4x4+ 0+ 4

and from the conservation of an electric charge law we obtain
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92=8-2+12

Thus we obtain for the mass number A of the unknown daughter nucleus 4=222, and
for the atomic number Z=86. From the periodic table we find that the daughter nucleus

is radon Rng;".

Problem 7-9. If a nuclear power plant generates power of 5 000 kW how many
kilograms of pure uranium 235 would be needed to produce electricity at this rate for a
day, assuming that the power plant produces electricity with an efficiency of 16.7 %.
The fission of a uranium 235 nucleus releases about 200 MeV.

Solution: The energy contained in / kg of uranium is:

26
E= %ZOOxlﬁ)ﬂO‘ B - g82x10%J

The energy released by a power plant per one day is

E'= 5x10° x3600 x 24 = 4310" J

Finally for one day’s consumption of uranium we obtain

E 167

Problem 7-10. Calculate the binding energy per nucleon of a sodium N  nucleus.

The mass of this atom 1s 22.98977u.
[ 8.11 MeV per nucleon|

Problem 7-11. Identify the unknown particles in the following nuclear reactions:
a). The beta decay of cesium Cs;, .

b). The alpha decay of fermium Fm/y, .
| @ B4y, 0|
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