2.2 KINETIC THEORY

The concept that matter is made up of atoms which are in continuous random motion is called
kinetic theory. Since the molecules are in random motion many of them have speeds less than
the average speed and others have speeds greater than the average. The formula for the most
probable distribution of speeds in a gas containing N molecules is

% 1mv?
4 m_\ oo v
) 4”N(27z'kT] ve

where f{v) is called Maxwell distribution function, % is Botzmann's constant, 7'is the
thermodynamic temperature and m is the mass of the molecule. The quantity f{v)dv represents
the number of molecules that have speeds between v and v+dv. Note that f{») does not give
the number of molecules with speed v; f(¥) must be multiplied by @v to give the number of
molecules. Since N is the total number of molecules in the gas, when we sum over all the
molecules in the gas we must get &, thus we must have

[rG)v=N
[
The speeds of individual molecules vary over a wide range of magnitude. To characterise

these speeds we introduce:
- average speed which is defined as the average of the speeds of all the

molecules;
_ 17% _ (kT
v :—]V!v.f(v)dv v~ 1.60 7

- most probable speed, which is the speed which occurs more than any
others; it is found as the extremum of Maxwell's distribution function

c—if-—(v—)=0 ‘ v, ~ 1.41‘/g—
dv m

- root-mean-square speed is defined as the average over the square of the

speeds
o, 1% N v/kT

o

The pressure of the molecules on the walls of the container due to the collisions of the
molecules with the walls is
1mN ,
=,
‘ ’ . 3V |
where V7 is the volume of the container and N is the number of molecules enclosed in the
container. The ratio

v =N, is called the concentration of molecules.

114




If the molecules of the gas in the container are of several different kinds, then the pressure of
this mixture of gases is equal to the sum of the pressures which they would exert if each
occupied the same volume by itself. This fact is expressed by Dalton's law

P=%P

The mean free path is defined as the average distance between successive collisions of a

molecule in a gas
1

gl ;e N,
where r is the radius of the molecule and N, is the concentration of the molecules.
The internal energy of the gas is equal to the sum of:
- translational kinetic energy,
- rotational kinetic energy,
- energy of vibrations,
- mutual potential energy of molecules.
At low densities and for the ideal gas the prevailing role is played by translational kinetic
energy. Thus we have

E, = f:W,:
1

The average value of the kinetic energy of the gas which consists of the same molecules
and each molecule has i-degrees of freedom is:

-12— kT - per one molecule

—-;—R T - per one mole.

The equipartition of energy theorem tells us that each degree of freedom shares an equal
amount of kinetic energy

:12— kT - per one particle

—;—R T - per one mole

A monatomic molecule has 3 degrees of freedom, a diatomic molecule has 5 degrees of
freedom and a molecule consisting of 3 or more atoms has 6 degrees of freedom.
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Problem 2-16. Eight particles have the following speeds, givenin m/s: 1.0; 6.0; 4.0;2.0;
6.0; 3.0; 2.0 and 5.0. Calculate the - average and the root-mean-square speeds..

Solution: The average speed of the particles is:

5= 1.0+ 6.0+ 4.0+ 2.0+ 6.0+ 3.0+ 2.0+ 5.0 )

=36ms
T8

The root-mean-square speed of the particles is:

.
MO+ 60+ 407+ 200+ 6.0°+ 300+ 207+ 5.0°

e = 4lm.s

Notice that average and root-mean-square speeds are different.

Problem 2-17. Determine formulas for (a) the average speed, (b) the most probable speed and
(c) the root-mean-square speed for Maxwell's distribution of speeds.

Solution:

(a) The average value of any quantity is found by multiplying each possible value of that
quantity (say speed) by the number of molecules that have that value, and then summing all
these numbers and dividing by the total number of molecules N. We are given Maxwell's
distribution, which is a continuous function of speeds, so the sum becomes an integral over the
product of v and the number f{v)dv that have speed v:

_ 17 m )i, -
v :We v.f(v)av :4”(27rkT) £v3e % gy

2

The integral I =J.v3e‘ﬁdv
o
can be solved by substitution: _’?’_‘f_ =y L ovdv=2ydy
e y 7=V T y

After substitution, the integral I takes the following form:

AR*T* T 4, _»
[Ty

0

We use integration by parts to solve the integral I, = _f ye” dy
0

li%~y2 and V= y.e‘yz

so that for 7, we obtain
I =;.'y3e—y2d};:
Q

Finally, after substitution for the average speed we obtain

b | =
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C 2l m Y 4k*T*1  [8kT kT
Vo=, —— = ~1,60,|—
o\ kT m: 2 m m

(b) The most probable speed is that speed which occurs more than any others, and thus is that

speed where f{v) has its maximum value. Since ﬁ‘%&ﬁ =0 at this point, we have

#0) =47lef—————m Y(Zve_%' _____eva3 “;%w =0
dv \27kT ) | T

Solving for v we get three roots: ¥, = 0; ¥, = * and v, = JZ’EZ"_ From the analysis of the
m

second derivation it is obvious that v, and v,correspond to the minimum of the distribution
function and the most probable speed is therefore

v,= 1.411/1‘1.
m

(c) The root-mean-square speed is defined as the average value of the squares of the speeds
of all the molecules or

o

2 =L sy =47{ m J

- 2xkT

(S0

mvz

ag
jv“e 2T gy
Q

m? '

The integral 1’ :jv“‘emﬁdv can be solved using the following formula
0

I, = [ e =2 oo xtnac = (2n —1)(22:3)....5.3.1 /aZ’”
1]

-

In the case of integral I’ we haven=2and a = 5% so that we have

Substituting for I'into the integral for V2. we finally obtain for the root-mean-square speed

V., = ],EE—-—- 1.73‘]E—_
m m




Problem 2-18. Calculate the mass of an oxygén ‘molecule and its average, root-mean-square
and the most probable speed at temperature 1=0°C. (M, = 32 kg.kmol .

Solution: The mass of the oxygen molecule :is- _
M ; Y

0. _ 32 - 531x10 % kg
N, 6023x 10

m=

where N, is Avogadro's number. The average speed of oxygen molecules is

= 4251m.5s""

Tm 7531x 107%

( 1 " X ’
3x 1.38x 10 >i2%7315 - 4615m.5""
7 5.31x 10

The most probable speed is
23
[ 2x 1.38x 107 )i273 15 - 3768ms
7 531x 1077

Problem 2-19. Calculate the rms speed of the molecules in a gas with a density of
p=3x10"%kg.m > and a pressure P=3.6 kPa.

S [BRT \/8xl.38x 10" % x 273.15

Root-mean square-speed is

f

Solution: Vs = \F’-E—T—— where the mass of the molecule is m = %/I—
m 4
Substituting for m into the expression for rms speed we have
3kIN ,
Vo =
M

The product N,k = R; where R is a universal gas constant.
Thus we have

3RT
Vs = 4| ——
M
From the ideal gas law PV=nRT we can substitute for RT:

= §£V—— z}i because W——
ey P vy °

Substituting numerical values we finally obtain

f %]
y = 3238310 o m s
V 3x10
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Problem 2-20. Calculate the prescure of  an ideal gas on the walls of the container if the
Maxwell distribution function for the x-component of velocity is given:

V/(vx)‘w‘[;

2
Y
"

2kT

where w = |——.

m
Solution: The pressure exerted by the gas on the walls of its container is due to the collisions
of the molecules with the walls. When one molecule strikes the wall it exerts a force on it. The
force due to all the molecules per unit area is equal to the pressure.
Assuming that the collision of the
molecule with the wall is elastic, the
normal component of linear momentum
(m v,) changesto (—mv,). Theyand z
components of the linear momentum
remain unchanged. Thus the total change
of the linear momentum of the molecule
due to its collision with the wall is:
mv,—(-mv,)=2myv,.
We denote the number of molecules within the volume ¥ as N. Thus the densﬁy of molecules
N, expresses the number of molecules per unit of volume or

"To calculate the pressure dP(v_) we have to determine the number of molecules with
components of velocity from v, to (v, +dv,) which per unit of timeicbllide with a unit area of
the container. We denote this number of molecules as drn(y, ). ,
The number of molecules per unit volume with velocities within the interval from v, to
O+ ) is diny(v.)=Now b ),
The number of m’olecules with velocities
v, colliding per one second with an area

of 1 cm?® is equal to the number of
molecules enclosed within a cylinder of
base 1cm* and height v, or

dn(vx)=v Vx 1 d"o (vi:)zv-xNOW(vx yvx

The pressure exerted by these molecules
on the wall is therefore

dp(v,) =2mv, dnlv, )—i— .

The total pressure of all the molecules on
the walls of the container is

P=[ap(,)=[2my, anf.)
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Since the velocities change from zero to infinity we have to integrate within these limits. After
substitution into the previous integral we have

v2

1 - %

wl

—e dv,

wyz

P =T2mvx.N0 v,
0

After a little rearrangement we have

P=2mN, jve“”dv

w\/—

w v,
~y

s 2] 3 L) f w? n ~ 1
To solve the integral [ = | vZe ¥ dv, we can use the formula from part ¢ of problem 2-17. In

this case we therefore have n=7/and a = —1—

2

3

Thus we have

Substituting onto the expression for pressure and bearing in mind the fact that w = 2T
m

obtain

P=2mN, ——-w3J_ N, kT .

“wir 4

Thus we reach the final formula P= N kT.

We see that the pressure of the gas on the wall of the container depends on the density of the
gas and its temperature.

We can also rewrite this equation for one mole of gas. In this case we have

A
V. :
where N, is the Avogadro's number and V,, is the volume of one mole. Substituting into the &

expression for pressure we obtain

PV =N, kT
‘Taking into account that N,.k = R we finally obtain the ideal gas law for one mole of gas

PV, =RT.

Problem 2-21. Calculate the partial pressures of nitrogen and oxygen in dry air, assuming
that the ratio of the amount of substance of nitrogen 7, to the amount of substance of oxygen

n, in dry air is

781

n_ 781 |
n, 1 iy




Solution; According Dalton's law the pressure of a mixture of two or more ideal gases is equal
to the sum of the pressures which they would exert if each occupied the same volume. In our
case the total pressure of air will be the sum of pressures of nitrogen £, and oxygen F, or
P=P+ P, €))
Each of the components of the mixture will have such a pressure as if it occupied the whole
volume 7 alone. Thus we can write the ideal gas law for each of the components of the mixture

m,

m
PV = —-RT and PV = RT . : 2
M, 27T M, @
Summing these two equations we obtain
pv= 2 g, 3)
1 MZ

From equations 2 and 3 we determine pressure of each component of the mixture, assuming
that the mass and molar mass is known:

m, m,

pe M p o ma ope b
mom m ., my
M 1 M 2 M 1 M 2
We denote the amount of substance of nitrogen and oxygen as
n = S (for nitrogen)
Ml
m2
n=—= for oxygen
2= 3 (for oxygen)

2
We can therefore rewrite the ideal gas law as

PV =(n, +n, )RT .
For the partial pressures of nitrogen and oxygen we obtain

P=—0_p and p=—2_pP
n+n n+ n,

Substituting numerical values we have for partial pressure of nitrogen
n

p=—"t_p-_" p. " _p.q7sP.
n+n LR 781+ 21

m
Similarly, for partial pressure of oxygen we have
p=—22 __021P.
78.1+ 21

Finally for the atmospheric pressure P=101kPa the partial pressure of nitrogen in the air is 79
kPa and the partial pressure of oxygen is 2/ kPa.
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Problem 2-22. Calculate the collision frequency of a neon molecule at temperature 1=327C
and pressure P=133 Pa. The diameter d of the neon molecule is 2.04 x 10”'° m and its molar
weight is M, = 20.2 kg.kmol '

Solution: The collision frequency of the molecule moving among molecules of the same sort is
given by the expression

Z,=\2N,n &%
The expression for the average speec/iif_tlxe molecule was found in part (a) of problem 2-17:
— 8kT

1 -
;

T m

We can express the density of neon for a given temperature and pressure on the basis of the

results obtained in problem 2-20 as
vy- £
kKT
Substituting for average speed and density of neon into the expression for the collision
frequency we have
167
mkT
The mass of the neon molecule can be found from
M Ne
N,
Finally, for the given temperature and pressure, for the collision frequency we obtain

Z = Pd*? ’167Z‘N - ]33x(204y]0“10)\/ 1672 x6.02x10%

\ M kT 202x1.38x102 x600

=235x 10° 5.

Z, = Pd’

m=

Problem 2-23. Calculate for molecules of oxygen, nitrogen and for a helium atom:
(a) the average speed v,
(b) the mean free path A for pressures 0./33 Pa; 133 Pa and 101 kPa;
(c) the collision frequency Z , for pressures 0.133 Pa; 133 Pa and 101 kPa.
The temperature is 0 C.
The diameters and molar masses of the molecules are respectively:

d, =296x 100" m dy, = 316x 107" m dy, =22x10"m
M, = 32kg kmol ™' M, = 28 kg kmol ' M,, = 4kg. kmol '
Solution:

(a) The average speed is given by the expression

S [BT _ /Sk]NA_ 8RT
zm \ 1M, T M

Substituting numerical values we have
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3
5 - \[8)( 8314x 10°x 27315 _ o\

V.

° 2%
W, = 4543m.s7
Vy, = 1200L.8m. s

Note that the speeds of the particles do not depend on the pressure but on the temperature
and on the sort of particles only.

1

(b) The mean free path A is given by the expression:

Vo v 1

" Z, N, zdv 2N,z d

where N, = %fi is the density of the particles. Using the ideal gas law for one mole of gas

m

PV _= R.T and bearing in mind the fact that kN , = R we can express density as

N,_N,P_NP_P
v, V,P RT T

n

N, =

Substituting into the expression for the mean free path we obtain

1 kT
Lrd P

From this expression we see that the mean free path is inversely proportional to the _pressure.
As an example we calculate the mean free path of helium for pressure 0./ 33 Pa:

A=

-23
i i 138107 x273.15 _ 121 1072m

“ J2xl22x107f 0.133

The numerical values of the mean free path (expressed in meters) for different gases and
pressures are arranged in the following table:

Gas 0.133 Pa 133 Pa 101 kPa

oxygen 7.26x 1072 7.26x 107° 9.56x 107°

nitrogen - 6.37x 107% 6.37x 107° 8.38x 107°

helium  131x 1077 131x107° 17.3x 10°°

(c) For collision frequency of partxic_l'es‘ we have already obtained (see problem 2—22) )

As a numerical example we calculaté the collision frequency for a molecule of oxygen for
pressure P=0.133 Pa:
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1676.02x10%

— = 58x 10°s .
32x1.38x107% x273.15

Z, =0.133(2.96x10™" \/

The numerical values of the collision frequency (in s~ ') for different gases and pressures are
shown in the following table: -

Gas 0.133 Pa 133 Pa 101 kPa

oxygen 58x 10° 5.8x 10° 4.45% 10°
nitrogen 7.13x 10° 7.13x 10° 5.42x 10°
helium 917x 10° 9.17x 10° 6.95x 10°

From the obtained results it is seen that collision frequencies are very high, even for low
pressures.

Problem 2-24. What is the translational kinetic energy of monatomic molecules in a gas:
(a) at temperature =27 C?
(b) at the temperature inside the Sun, supposing that this temperature is
2x 107 K7 (This part of the problem has only an illustrative value).
Does this energy depend on the chemical composition of the molecule?

Solution:
(a) Following equipartition of the energy theorem each degree of freedom shares an equal

: 1 s . .
amount of energy s kT . Since the monatomic molecule has three degrees of freedom its
. . .3
translational kinetic energy 18 5 kT or

W, =—32—1.38><10’23(27 +273.15)=621x10"J

(b) The kinetic energy of atoms inside the Sun is

W, =-z—1.38 x10"2x2 x107 =4.15x10°J .

From the presented expressions it is obvious that kinetic energy does not depend on the
chemical composition of the molecules. That is to say that at the same temperature monatomic
molecules of different gases will have the same kinetic energy.

Problem 2-25. Calculate the angular velocity of a rotating hydrogen molecule at temperature
300 K. The moment of inertia of a hydrogen molecule is about 5x10™ kg.m®.

Solution: A hydrogen molecule is a typical example of a diatomic molecule. At ordinary
temperatures a diatomic molecule can be viewed as a rigid body, replaced by a rigid
rod - a dumbbell molecule. The moment of inertia along the axis of the rod is
negligible compared to its moments of inertia about axes normal to the rod. Hence
we assign energies only to the rotational degrees of freedom about the two axes
perpendicular to the rod and to each other. Since the molecule undergoes translational
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motion only and it has only two
degrees of freedom, then following
equipartition of the energy theorem, its

rotational kinetic energy is %kT i

However the kinetic energy of rotational

motion can be also expressed as —lz—Jw =

From a comparison of these two
expressions we obtain for angular

frequency:

~ 23
_ !ZkT _ [2x 138x 10”47 X300 _ 14 itet
J . 5% 10 .

Problem 2-26. Following the principles of kinetic theory calculate the specific heat at constant
volume ¢, for (a) argon and (b) nitrogen. (M, = 40 kg.kmol ~ ', M, = 28kg.kmol™").

Solution; Each gas is composed of molecules of the same sort If each of the molecules has i-
degrees of freedom, the kinetic energy of the molecule is 5 LT

The total internal energy of one mole of gas is therefore

= N——kT

where N, is the Avogadro number. Any arbitrary amount of gas contains n moles of

molecules. This amount of substance is 7= % . Thus the total internal energy of this

amount of gas is
- m

: - U,=—N, kT = ——-—RT
| A M 2 M2

When a gas is heated at constant volume all the heat added is used to increase its internal
energy and the temperature of the gas increases by A7. Thus we have

mi m i
AU— RT AT)~ — —RT = — —RAT.
(Q)V (+ ) M2 M2

Specific heat is definedas ¢, (Q)V
mAT
i R

so that after substitution we obtain ¢ ,= ——.
: 2M
(a) Since argon is a monatomic gas it has three degrees of freedom; /=3. Thus we have

3 R 3 814 | .
€= = = = = 311J.kg” "K',
= aM, 2 40 &
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(b) Since nitrogen is a diatomic gas »i%5‘.:_'Thus we have

5 R
Cp= =
2M,,

8314
28

= 742J . kg K.

>
2
Problem 2-27. Calculate the molar weight of a mixture of gases with components having

masses m,,m,..m, and molar weights M, M, .. M,.

r,w,~m nM, +n,M, +...+nM, |
]_ n R J

Problem 2-28. Calculate the molar weight of dry air, assuming that the ratio of the amount of

. 78.1
substance of nitrogen #, to the amount of substance of oxygen n, is ;’:‘2—= ETh

(M, =32kgkmol™ ; M, = 28 kg.kmol ™ ").

[M M, +n,M, =28.8kg kmol’l}
n +n,

Problem 2-29. Calculate the density of the molecules of an ideal gas if the pressure acting on
the walls of the container at temperature 1=27C is P=0, 1 Pa.

{NO _PN, =2.4x1019m’3}
RT

Problem 2-30. The speed of sound in air at temperature =27 C is 348 m/s. Compare this
speed with the root-mean-square speed of nitrogen molecules at the same temperature.

(M, = 28 kg.kmol ).
["'m =l.485]
2%

5 A

Problem 2-31. Calculate the pressure for which the mean free path of a hydrogen molecule at
temperature 68 C is equal to A=2 cm. The diameter of a hydrogen molecule is
d=23x10"m

Problem 2-32. Compute the change in average kinetic energy of argon molecules if at constant
volume the gas is added the amount of heat O, =3516 J. The mass of argon is m= 700 gand
M, = 40kg.kmol "'

l—AU =‘M.4rQV

=116.8x1072J
mN :{
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