4. GEOMETRICAL OPTICS

This chapter is devoted to the ray model of light. The straight-line paths that light
follows are called light rays. The ray model of light is very successful in dealing with
many aspects of light such as reflection, refraction, and the formation of images by
mirrors and lenses. Because these explanation involve straight-line rays at various angles,
this subject is referred to as geometrical optics.

As for the speed of light we can say that the accepted value today for the speed
of light ,c, in vacuum is

¢ =2.99792458 x10" m/s.

We usually round this value off to 300x10° m/s when extremely precise results are
not required. In air, the speed 1s only slight less In other transparent materials such as
glass and water, the speed 1s always less than that in vacuum.,

The ratio of the speed of light in vacuum ¢ 1o the speed v 1n a given material 15

called the index of refraction n of that material

C
n=—.
v

4.1 Reflection; Plane Mirror

When light strikes the surface of an object, some of light 1s reflected and the rest
is either absorbed by the object (and

Foorsr?léf;ce transformed to heat) or, if the object 1s

: transparent (like glass or water), part of it

: o, - angle of incidence is transmitted through.

| o, - angle of reflection We shall be now interested in a
v reflection. From the Fig. we define the

angle of incidence &, 10 be the angle an
incident ray makes with the
v normal to the surface and the
V angle of reflection a, to be the
angle the reflected ray makes
with the normal. For flat surface
the incident and reflected rays lie
in the same plane with the
normal, called the incident plane,
and ‘the angle of incidence
equals the angle of reflection -
this is called the law of
reflection.

Plane mirror

T} The following figure
shows how an image is formed
by a plane mirror. Two triangles
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ABD and CDB are congruent and the lengths AD = CD. That is, the image is as far
behind the mirror as the object 1s in front. We say that the image distance d. equals the
object distance d , and we also see that the height of the image 1s the same as that of the
object. Since the rays do not actually pass through the image, a piece of white paper or
film placed at the image would not detect the image. Such the image is called a virtual
image In a real image the light does pass through the image and such the image can
appear on paper or film placed at the image position.

Problem 4-1. A woman 1.60 m tall stands in front of a vertical mirror. What is the
minimum height of the mirror and how must its lower edge be above the floor if she is to
be able to see her whole body? Assume her eyes are 10 cm below the top of her head.

Solution: First we consider the ray from the
toe, AB, which upon reflection becomes BE
and enters the eye E. Since light enters the eye
from point A (the toes) after reflecting at B, the
mirror needs to extend no lower than B.
Because the angle of reflection equals the angle
of mcidence, the height BD is half of the height
AE. Since AE=160m-0.10 m=150m, BD
=0.75 m. If the woman 1s to see the top of her
head, the top edge of the mirror only needs to
reach pomnt F, which 1s 5 cm below the top of
her head (half of GE = 10 ¢cm). Thus DF = 1.55 m and the mirror need be only 1.55 m -
0.75 m = 0.80 m high and its bottom edge must be 0.75 m above the floor.

We may say generally that a mirror need be only half as tall as a person for that person to
see all of himself.

4.2 Spherical Mirrors

Reflecting surface do not
have to be flat. The most
common curved mirrors are
spherical. A spherical mirror is
called convex if the reflection
takes place on the outer surface
of the spherical shape and it is
called concave if the reflecting
surface 1s on the mner surface of

convex mirror concave mirror

the sphere.

Generally, a spherical mirror does not make as sharp an image as a plane mirror
does. However, if the reflecting surface of a mirror has a width that is small compared to
its radius of curvature, the rays parallel to the principal axis make only a small angle upon
reflection, then the rays will cross each other at nearly a simple point, or focus F, or the
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focal point of the mirror. The principal axis is

\ e defined as the straight line perpendicular to the
TAB curved surface at it center (line CA m Fig.). The
y\ distance FA 1s called the focal length, f; of the
C.-g) F A principal mirror. Another way of defining the focal pomt 1s
to say that it is the image point for an object
infinitely far away along the principal axis. The
point C 1s the center of curvature of the mirror.
The line CB 1s equal to r, the radius of curvature.
For the mirror that is small compared to its
radius of curvature the focal length in this

approximation is half the radius of curvature
f=r/2

axis

and the image 1s sharp.
If the larger the mirror is, the worse this approximation is. This "defect" of spherical
mirrors is called spherical aberration.

We have already known that for an object
at infinity the image is located at the focal point of
a mirror if that is small compared to its radius of
curvature. But where does the image lie for an
object not at infinity? To determine the image
position is simplified if we use three simple rays
(see Fig) Ray 1 is drawn parallel to the axis;
3 therefore it must pass through F. Ray 2 1s drawn

through F, therefore it must reflect so 1t i1s parallel
to the axis. Ray 3 1s drawn so that 1t passes
through C, the center of curvature, and thus
is along a radius of the spherical surface; so
it 1s perpendicular to the mirror and thus will
be reflected back on itself
It can be derived analytically the equation
called the mirror equation

11 1

A N i

d, d.f
where d, 1s the object distance, d. 1s the
image distance, and f1s the focal length.
Because the light actually passes through this image itself, this 1s a real image. This
equation gives us a way of determining the position of the image, given the object
position and the focal length (or radwus of curvature) of the mirror.

The lateral magnification, m, of a mirror is defined as the height of the image,
h , divided by the height of the object, A,

- do

. _ 4
I = o e
hO dO

where the minus sign 1s inserted as a convention.
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The conventions we use are: if 4, is considered positive, /2 1s positive if the image 1s
upright and negative if inverted, d, and d, are positive if image and object are on the
reflecting side of the mirror, but if either image or object 1s behind the mirror the
corresponding distance is negative. Thus the magnification 1s positive for an upright
image and negative for an inverted image.

The analysis used for concave mirrors can be applied to convex mirrors. The
mirror equation and the equation for the magnification hold for convex mirrors but the
focal length f must be considered negative, as must the radius of curvature.

Problem 4-2. A 150-cm high object is placed 20 cm from a concave murror whose
radius of curvature is 30 cm. Determine the position of the image and its size.

Solution: The focal length £=1/2 =15 cm. Since d; =20 cm, we have

21 1 so167em.

d J/ 4
So the image is 60 c¢m from the mirror on the same side as the object. The lateral
magnification 1s
60
ML 2l =5
20
Therefore the image is (-3)(1.5) =-4.5 cm high, and is mverted.

Problem 4-3. A 1-cm high object is placed 10 ¢m from a concave mirror whose radius
of curvature 1s 30 cm  Determine the position of the image and the lateral magnification.

Answer d = -30cm  The minus sign means the image 1s behind the mirror. The lateral
magnification 1s
s s
10
So the image is 3 times larger than the object, the plus sign indicates that the image 1s
upright

Problem 4-4. A convex rearview car mirror has a radius of curvature of 40 cm.
Determine the location of the image and its magnification for an object 10 m from the
mirror

Solution: With 1 =-40 cm , f=-20 cm, the mirror equation gives
1 1 1 51 .4
-——m .

d f d, 10
Sod =-0.196m or 19.6 cm behind the mirror. The lateral magnification is

m= i: 0.0196
d

: 0
or 1/51, so the upright image is reduced by a factor of 51.
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4.3 Refraction; Snell's Law

When light passes from one medum into another, part of the incident light 1s
reflected at the boundary. The remainder passes into the new medium. If a ray of light 18
incident at an angle to the surface (other than perpendicular), the ray is bent as it enters
the new medium. This bending is called refraction. The following figure shows a ray
passing from air into water.

' normal ' normal

The angle ¢, is the angle of incidence and @, is the angle of refraction. In this case
the ray bends toward the normal This is always the case when the ray enters a medium
where the speed of light s less. If light travels from one medium into a second where its
speed is greater, the ray bends away from the normal; for a ray traveling from water to
air.

The angle of refraction depends on the speed of light in the two media and on the
incident angle. A relation between ¢, and ¢, is known as Snell's law or the law of
refraction. It 1s written as -

nsSin @ =n,sn @, ,
@, is the angle of incidence and ¢, 18 the angle of refraction; n, and n, are the
respective indices of refraction in the materials.

It is clear from Snell's law that if »,)n, , then @,(¢, ; thatis, if light enters a

medium where n is greater (and its speed less) then the ray 1s bent toward the normal
And if n,(n, ,then ¢,)@, ,so the ray bends away from the normal

When light passes from one material into a second material where the index of
refraction is less (say from water into air),
the light bends away from the normal. At a
particular incident angle, the angle of
refraction will be 90° . The incident angle at
which this occurs is called the critical angle
and from Snell's law it 1s given by

sin @ = ™ sin90" =2

nl
For incident angles greater than ¢ . Snell's law tell us that sin @, is greater than 1.00 .
In this case there is no refracted ray at all, and all of the light is reflected. This is called
total reflection. This total reflection can occur only when light strikes a boundary where
the medium beyond has a lower index of refraction.
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Problem 4-5. Light strikes a flat piece of glass with parallel faces at an incident angle of
60° . If the index of refraction of the glass is 1 5, what is the angle of refraction ¢, n
the glass and what is the angle @, at which the ray emerges from the glass?

Solution: We assume the incident ray 1sin air so n, = 1 and »n,= 1.5 Then,

: I,
sin @ = ~_sin 60° = 0.577,

so ¢, =352°%
Since the faces of the glass are parallel, the incident angle m this case 1s just ¢, . This
time n, =15 and n, =1 . Thus the angle ¢, 1s

. LS .
sin (pb:—l—sm ?,

and ¢, = 60°

Problem 4-6. Our nearest star (other than the sun) is 4 2 light years away. That 1s, 1t
takes 4 2 years for the light to reach earth. How far away 1s 1t in meters?
[4%10m]

Problem 4-7. Suppose you are 60 cm from a plane mirror. What area of the mirror 1s
used to reflect the rays entering one eye from a point on the tip of your nose if your pupil

diameter 1s 5.5 mm?
[5_9 %1078 mz]

Problem 4-8. How far from a concave mirror (radius 24 cm) must an object be placed if

1ts 1mage 1s to be at infinity?
[12 cm ]

Problem 4-9. The magnification of a convex mirror 1s 0.35 for objects 4 m away. What

1s the focal length of this mirror?
[-22m ]

Problem 4-10. What is the radius of a concave mirror that gives a magnification 1.6 of a

face 30 cm from 1t?
[ 80 cm ]

Problem 4-11. A convex mirror has a radius of curvature of 20 cm. If a point sources 1s

placed 14 cm away from the mirror, where 1s the image?
[ -5.8 cm; the image 1s virtual ]
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4.4 Refraction at a Spherical Surface

Let us consider an object which is located in a medium whose index of refraction
is n, . A ray from the
object enters a medium
whose index of
refraction 15 n, . The
radius of curvature of
the spherical boundary
is R, and its center of
curvature 1s at pomnt C
(see Fig) It can be
shown that all rays
leaving pomt 0 will
focused at a single point I, the image point, if we consider only rays (called paraxial rays)
that make small angles ¢, , @, , o, § and y . In this case 1t can be derived the equation

The equation 1s also
vahd for a concave
surface if we make the
following conventions:

1. If the surface 1s
convex (so the center of
curvature C 15 on the
side of the surface
B opposite to that from

— which the light comes),
} = J R s positive, 1if the
surface is concave (C on

the same side from which the light comes) R 1s negative.

2. The image distance d, follows the same convention: positive if on the opposite side
from where the light comes, negative if on the same side.

3. The object distance is positive if on the same side from which the light comes (this
1s normal case), otherwise 1t 1s negative.
For the case with a concave surface, both R and d are negative when used in the
equation ; in this case the image 1s virtual.

Problem 4-12. A person looks vertically down
into a 4-m deep lake. How deep does the lake
appear to be?

Solution: Point O represents a point on the lake
bottom. The rays diverge and appear to come
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from point I, the image. We have d, =4m and, for a flat surface R = oo .
Now we may write

and thus d, = -3m . So the lake appears to be only three-fourths as deep as it actually is.
The minus sign tells us the image point I is on the same side of the surface as 0, and the
image 1s virtual

4.5 Thin Lenses

W

sl
NN S

If the diameter of a lens is small compared to the radu of curvature of the two lens
surface the lens 1s called a thin lens.

If rays parallel to the principal axis fall on a thin converging lens, they will all be
focused to a point called the focal point F. We can also say that the focal point is the
image point for an object on the principal axis at infinity. The distance of the focal
point from the center of the lens 1s called the focal length, f

The plane perpendicular to the axis of the lens and passing through the focal point 1s
called the focal plane of the lens If parallel rays fall on a lens at an angle, they focus at
another point placed 1n this focal.

The focal point F of a diverging lens is defined as that point from which refracted
rays, onginating from parallel incident rays, seem to emerge. And the distance from F to
the lens 1s called the focal length, just as for a converging lens.

The image formed by a lens for a given object can be found by drawing three
particular rays as indicated in the following figures.

For a converging lens the 1image
! position can be determine by drawing

three rays. Ray 1 is drawn parallel to

5 the axis; therefore it 1s refracted by the

= = lens so 1t passes through the focal point
\\J F behind the lens. Ray 2 is drawn

T through the focal point I' on the same

side of the lens as the object, 1t

therefore emerges from the lens parallel
to the axis. Ray 3 is directed toward the
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center of the lens where the two surfaces are essentially parallel to each other; this ray
therefore emerges from the lens at the same angle as it entered. The image points for all
other points on the object can be found similarly to determine the complete image of the
object. Because the rays actually pass through the image, it 1s a real image.

For a diverging lens the image
position can be determine by drawing
the same three rays. Ray 1 is drawn
parallel to the axis, but does not pass
i through the focal pomnt F behind the
F lens, instead it seems to come from the

focal point F' in front of the lens. Ray 2

1s directed toward F and 1s refracted

parallel by the lens. Ray 3 i1s again

directed toward the center of the lens |
this ray therefore emerges from the lens at the same angle as it entered. The three
refracted rays seem to emerge from a point on the left of the lens. This 1s the image, 1.
Since the rays do not pass through the image, it is a virtual image.

An equation that relates the image distance to the object distance and the properties of
a thin lens has form
1 1 1 1
S REILATEY (VI | NER. I 1
ofra] o

This equation relates the object distance d, to the image distance d, (the distance from
the lens of the final image formed by the lens) and to the properties R, ,R, and n of the

lens. It 1s valid, of course, only for paraxial rays and only if the lens is very thin. For
nonparaxial rays, and for nonthin lenses, the image may not be sharp.

If we consider an object at infinity (a’o =), the image distance is the focal length,
d = f, and then the equation becomes

= :(nAl)(Li) e
/ R K

This 1s called the lens-maker's equation. It relates the focal length of any lens to the
radn of curvature of its two surfaces and its index of refraction. A radius of curvature is
positive if a surface 1s convex to the incoming light, and is negative if concave. If a lens is
turned around, so light comes from the opposite direction, R, and R, exchange roles in
Eq.(2), and they also change sign so the value of f remains the same. Thus the position of
the focal pont F is the same on both sides of a lens.

Combining Eqs.(1) and (2) yields
I 1 1
—t—=
dO d1 f
This 1s called the lens equation. It will be valid for both converging and diverging lenses
and for all object and image positions if we use the following conventions.
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1.The focal length 1s vpositive for converging lenses and negative for diverging lenses. A
radius of curvature is positive when hight strikes a convex surface and negative when it
strikes a concave surface.

2. The object distance 1s positive if it 1s on the side of the lens from which the light s
coming, otherwise it 1s negative.

3. The image distance is positive if 1t is on the opposite side of the lens from where the
light is coming; if it is on the same side, d, 1s negative. We can also say that the image

distance 1s positive for a real image and negative for a virtual image.

4. Object and image heights, 4 and h,, are positive for points above the axis, and
negative for points below the axis.

The lateral magnification m of a lens 1s defined as the ratio of the image height to
object height,

hood
For an upright image the magnification 1s positive, and for an inverted image m 1s
negative.

Problem 4-13. A planoconcave lens has one flat surface and the other has R = 18.4 cm.
The index of refraction of the lens 1s n = 1.51 What 1s the focal length?

Solution: A plane surface has mfinite radius of curvature (so 1/ R, =0). Therefore we

can write
/
—1-_(1.5171)[—L)
7 184

and we have f=-36 cm, and the lens is diverging.

Problem 4-14. What 1s the position and size of the image of a 22 4 cm high object
placed 1.5 m from a +50 mm focal length lens?

Solution: The lens is converging with f = +5 cm and the lens equation may be written as
E.1- § -8B L,

— =——cm
d f d, 150
and so d, = 5.17 cm behind the lens.

The magnification

m=— 3174 0345
d 150

and thus
h =(-0.0345)(22.4) = ~0.773 cm.

The image 1s 7.73 mm high and is inverted.
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Problem 4-15. An object is placed 10 ¢cm from a 15-cm focal length converging lens.
Determine the image position and size.

Solution: Since f=15cm and d,=10cm ,
1 1 :

=G
d 30

so d, =-30cm . Since d. is negative, the image must be virtual and on the same side of
the lens as the object.

The magnification m = -(-30)/10 = -3; so the image is three times as large as the object
and 1s upright

Problem 4-16. Where must a n object be placed if a 25-cm focal length diverging lens 1s
to form a virtual image 20 ¢cm in front of the lens/

Solution: Since f=-25 cm and d, = ~20cm , then
1 1 1 e

1
— +—=—cm
d, 25 20 100
So the object must be 100 cm in front of the lens.

Problem 4-17. To measure the focal length of a diverging lens, a converging lens is
placed next to 1t as in Fig. The rays are focused by this combination at a point 28.5 cm
behind them. If the converging lens has a focal length f, of 16 cm, what 1s the focal

length f, of the diverging lens.

Solution: Let f, =28.5cm refer

— to the focal length of the total

combination. If the diverging lens

fg=16cm were absent, the converging lens

t;=285cm  would form the image at its focal

point, that 15, at a distance

f,=16cm behind it. When the

diverging lens 1s placed next to the converging lens we treat the image formed by the first

lens as the object for the second diverging lens. Since this object lies to the right of the

diverging lens, this is a situation where d, 1s negative. Thus, for the diverging lens, the

object 1s virtual and d, = ~16 cm, and it forms the image at distance d, =28 5¢cm away.
Thus

oL ooraem

11
__*__. ARSI .
f, d, d 16 285

So f,=-365cm.
This last problem 1s an illustration of how to deal with lenses used in
combination. In general, when light passes through several lenses, the image formed by

one lens becomes the object for the next lens. The total magnification will be the product
of the separate magnifications of each lens.
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Problem 4-18. A convex meniscus lens is made from glass with n = 1.5 . The radu of
curvature are 22 4 cm and 46.2 cm. (a) What is the focal length? (b) Where will it focus

an object 2 m away’

Solution: (a) R, =22.4cm and R, =46.2cm; both are positive since both are convex
surfaces to the incoming light assumed from the left. Then

3-:(15~D Al—n-—l—)aoxn14cm*.
7 224 462
So £= 89 cm and 1s converging.
Notice that if we turn the lens around so that

R =-462cm and R, =-22.4 cm we get the same result.

=02:4 .
Ry=zeaem (b) From the lens equation

T a,-de2em L1 1 sem

d [ d,

sod =l6m.

Problem 4-19. Both surfaces of a double convex lens have radit of 28 ¢cm. If the focal

length 1s 26.2 cm, what is the index of refraction of the lens material?
[153]

Problem 4-20. How far apart are an object and an image formed by a 65-cm focal length

converging lens if the image is 3x larger than the object and 1s real?
[35m]

Problem 4-21. Two 32-cm focal length converging lenses are placed 21.5 cm apart. An
object 1s placed 55 cm in front of one. Where will the final image formed by the second
lens be located? What 1s the total magnification?

[ 20.2 ¢cm beyond second lens;, 0512 ]

4.6 Optical Instruments
1) The Simple Magnifier

The nearest point at which an eye can focus clearly 1s called the near point. The
standard near point is taken to be 25 cm. The most distant point that can be focused
clearly by the eye is called the far point. For a normal eye the far point is taken to be
infinity.

A simple magnifier allows to place a small object closer to the eye so that it
subtends a greater angle. The object is placed at the focal point or near it. Then the
converging lens produces a virtual image, which must be at least 25 cm from the eye if
the eye is to focus on it. A comparison of Fig (a) with (b), in which the same object 1s
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viewed at the near point
with the unaded eye,
reveals that the angle the
object subtends at the eye 1s
much larger when the
simple magnifier is used.
The angular
magnification, M, of the
h lens is defined as the ratio
o) [ —— b> of the angle subtended by
' (s et e e L the object using the lens- to
the angle subtended using
the unaided eye with the

:image

object at the near point of the eye
mM=L
4

This magnification can be written in terms of the focal length f of the lens as follows.
a) If the eye is focused at near point N =25 cm (the image is at the near point N) then

M:1+§f—_
S

b) If the eye is relaxed (eye is focused at o) when using the simple magnifier, the image
is then at infinity, and the object is then precisely at the focal point. Then

m-2
/

Tt is clear that the magnification is slightly greater when the eye is focused at its near
point than when relaxed. And the shorter the focal length of the lens, the greater the
magnification.

Problem 4-22. An 8-cm focal length converging lens is used as a simple magnifier.
Calculate: (a) the maximum magnifications, (b) the magnification when the eye 1s
relaxed

Solution: (a) The maximum magnification is obtained when the eye 1s focused at its near
point.

M:1+E:1+§z4>«
f 8

b) With the eye focused at infinity,
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11) Telescope

A telescope 1s used to

SLCN magnify objects that are very

o fo far away, in most cases the

object can be considered to be

T Y at infinity. The astronomical

telescope contains two

Fe
\ i_i L % converging lenses located at

> opposite ends of a long tube.
objective  zi-ll- The lens closest to the object
S is called the objective lens
— and forms a real image /, of
i the object at its focal point £,
' (or near 1t if the object 1s not
at infinity). Although this
image, /,, 1s smaller than the origimal object, 1t is very close to the second lens, called the
eyepiece, which acts as a magnifier. The eyepiece magnifies the image produced by the
objective to produce a second, greatly magnified image, /,, which is virtual If the
viewing eye 1s relaxed, the eyepiece i1s adjusted so the image 7, is at infinity. Then the
real image /, 1s at the focal point F, of the eyepiece, and the distance between the lenses
is f, + f, for an object at infinity.
The magnification of this telescope 1s
o b
72

where a minus sign indicates that the image is inverted. To achieve a large magnification,

the objective lens should have a long focal length and the eyepiece a short one.

B

2

Ey

Problem 4-23. A telescope has an

et objective lens whose focal length is 28
‘ cm and an eyepiece with focal length
! -8 cm. What 1s its magnification?
_— Answer:
N 3 o, N M=-f,/f, =—(28)(-8)=35x.
Fe |
117) Compound Microscope

A compound microscope has
both objective and eyepiece lenses. A
microscope 1s used to view objects that
are very close, so the object distance 1s
very small. The object 1s placed just
beyond the objective's focal point. The
image /, formed by the objective lens

g 47 . .
o 1s real, quite far from the lens, and
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much enlarged. This image is magnified by the eyepiece into a large virtual image /,,

seen by the eye.
The magnification M is equal to the product of the objective magnification A/, and the

eyepiece magnification M,

l- N
MO dl ____f_Q, > Me:# >
do d() fe
and
M= M,xM,
This can be expressed as
M NI
Ja Ja

This approximation is accurate when f, and f, are small compared to / so
[~ f ~1 and d,~ f, This 1s a good approximation for large magnifications, since
these are obtained when f, and f, are very small

Problem 4-24. A compound microscope consists of a 10x eyepiece and a 50x objective
18 cm apart.

Determine: (a) the magnification ; (b) the focal length of each lens; and (c) the position
of the object when the final image 1s in focus with the eye relaxed. Assume a normal eye
with N =25 cm.

Solution: (a) The magnification 1s 10x50 = 500x .
(b) The eyepiece focal length 1s f, = N/ M, =25/10=2.5cm . It 1s easier to next

find d,, before we find f, since we can use the equation for M, ; solving for d; , we find
d, = {7 fe)/MO =155/50=0.31cm. Then, from the lens equation:
11 1 sl

=t — = cm
£, d, d 155
so f, =03¢cm.
(¢) We just calculated d, = 0.31cm , which 1s very close to f, .

1V) Ophthalmology, nstead of using the focal length, uses the reciprocal of the focal
length to specify the strength of lenses This s called the power, P, of a lens:

P=—

f

The unit for lens power is the diopter (D) which 1s an inverse meter: 1 D =1m™"
The power of a converging lens is positive, for a diverging lens is negative - since f is
negative. For example, a 20-cm focal length lens has a power

P:—l—:Sm‘I:SD.
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Problem 4-25. A farsighted person has a near pomnt of 100 cm. Reading glasses must
have what lens power so that this person can read at a distance of 25 cm? Assume the
lens 1s very close to the eye.

Solution: When the object 1s placed 25 cm from the lens,
N = we want the image to be 100 away on the same side of
St ﬁ /‘\3\\ the lens, and so it will be wirtual Thus

——————————— o\ d, =25cm,d =-100cm and
**** & < 0 2 1
ar 11 1 1
=t ——=—cm
| \ | f 25 -100 33
P So f=33cm=033m
\ . I ‘J _ And the power of the lens is P = 1/f= +3 D. The plus

sign indicates it is a converging lens.

Problem 4-26. A nearsighted eye has near and far pomts of 12 c¢cm and 17 cm,
respectively. What lens power 1s needed for this person to see distant objects clearly. and
what then will be the near point? Assume that each lens is 2 cm from the eye.

Solution: The lens must image distant objects (a’o =) so they are 17 cm from the eye,

or 15 cm in front of the lens (d, = 15 cm):
1 1

f -l5em
So f=-15cm=-015m and P = 1/f=-6.7 D. The minus sign indicates it must be a
diverging lens. For the near point, the image must be 12 cm from the eye or 10 cm from

the lens, so d, =-0.1m and
11 1 1 1 | I

= = = s m
d, f d -015 -010 030

So d, =30cm=030m which means the near point when the person 1s wearing glasses
15 30 cm 1n front of the lens.

Problem 4-27. A magnifier is rated at 3x for a normal eye focusing on an image at its
near point. (a) What is its focal length? (b) What will 1t be if the 3x referred to a relaxed
eye?

[125cm; 83 cm ]

Problem 4-28. A child has a near point of 10 cm. What is the maximum magnification
the child can obtain using an 8 8-cm focal length magnifier? Compare to that for a
normal eye.

[ 2.1x for child; 3.8x for normal eye ]
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Problem 4-29. A small object is placed 3.8 cm from a +4-cm focal length lens. Calculate
(a) the position of the image, (b) the angular magnification. ,
[ 76 cm in front of lens; 6.6x ]

Problem 4-30. What is the magnification of a telescope whose objective lens has a focal
length of 50 cm and whose eyepiece has a focal length of 3.1 cm? What is the overall
length of the telescope when adjusted for a relaxed eye?

‘ [M=-16; 53.1 cm ]

Problem 4-31. The eyepiece of a compound microscope has focal length of 2.5 cm and
the objective has f= 08 cm. If an object is placed 0.85 cm from the objective lens,
calculate (a) the distance between the lenses when the microscope 1s adjusted for a
relaxed eye, and (b) the total magnification.

[ 16.1 cm; 160x ]

Problem 4-32. A microscope has a 2-cm focal length eyepiece and 1-cm focal length
objective. Calculate (a) the position of the object if the distance between the lenses 15 18
em, and (b) the total magnification, assuming a relaxed normal eye.

[d, =1.07cm; 190x]

Problem 4-33. Reading glasses of what power are needed for a person whose near point
is 120 cm so that he can read at 25 cm? Assume a lens-eye distance of 2 cm.
[ 433D |
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