3. ELECTROMAGNETIC WAVES

3.1 MAXWELL’S EQUATIONS

Maxwell’s equations are a set of four equations containing the most important laws of
electricity and magnetism. The properties of electromagnetic waves are also described by
these equations. Maxwell’s equations are usually wrtten in two equivalent forms,
integral and differential.

Integral form Differential form
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These four fundamental equations are usually written together with the following four
equations, which express the influence of the medium on the electric and magnetic fields:

1 j= ok Ohm’s law

2 D= ce B o D= s E+ P

: B= pu H or B u i+ ]

4 F- q( e 9w B) Lorentz’s force
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3.2. PROPERTIES OF ELECTROMAGNETIC WAVES

From the standpoint of technical applicattons, the study of electromagnetic waves in a
nonconducting homogeneous and isotropic medium  without electric charges and

permanent magnets is very tmportant.
The wave equations for electric and magnetic components of an electromagnetic wave

vel
are respectively P .
> °E AH 7
z = g :
ot v
The velocity of electromagnetic wave propagation 1s
1

ey

Electromagnetic waves far away from the source are plane transverse waves. For a
wave travelling along the x axis, the relation between the electric and the magnetic
component 1s

H, = .iEy(z- —’5) Hy:—\f—iEz(h x)
7 c 7 c

The angle between the electric E and magnetic H component of an electromagnetic

AE = &

¢ =

4
wave 15 —.
2

Poynting’s vector is defined as the rate of energy transport per unit area and per unit of
time, or

S=Ex H W
The conservation of energy law for an electromagnetic field 13

iy §= — Dham
ot
where w,,, is the density of energy of the electromagnetic field:
_ Y% By H B 3
W, = 2[E.D+ H.Bl' (m’).

The intensity of an electromagnetic wave Is defined as the power transmitted in one
penod per unit area perpendicular to the energy flow:

P T 5
I=—| Sa W/m’).
| (W]

0
3.3. WAVE NATURE OF LIGHT
Visible light constitutes only a small fraction of the spectrum of electromaguetic waves

ranging from 3.9x/ 07 to 7.6x107 m. The wave theory of light is based on Huyghens’
principle:
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Every point on a wavefront may be considered as a source of secondary spherical
wavelets which spread out in the forward direction at the speed of light in the medium.
The new wavefront is then the surface tangent to all these secondary wavelets.

A wavefront is a surface joining all adjacent points on a wave which have the same
phase.

Huyghens’ principle immediately leads to a satisfactory explanation of the reflection and
refraction of light.

Diffraction is the bending of waves into the shadow region when they pass through
holes or slits comparable in size to the wavelength. It comes from the superposition of an
infinite number of wavelets arising from different places on the same wavefront (e.g.
single shit diffraction).

Interference is the superposition of two or more beams of light so that they reinforce
each other (constructive interference - bright fringes) or cancel each other out
(destructive interference - dark fringes). It arises from the superposition of a finite
number of waves coming from different coherent sources (double slit experiment).
Dispersion of light is the dependence of the index of refraction of a material on
wavelength, leading to a difference in the angle of refraction.

Single-slit diffraction:
AL
= —n
w

where L 1s the distance between the screen and the slit, w is the width of the shit, £ 15 the
wavelength of the light and 7 1s an integral number.

We find that dark fringes occur at distances:

n

Double slit experiment:

We find bnight fringes at distances Vnax = g kA,

and we find dark fringes at distances Yo = %(Zk + 1) —/:7

where d is the distance between the centres of the shts, A is the wavelength of the light
and =012, ..

Interference by thin film:

Destructive interference occurs in reflected light and constructive mterference occurs in
transmitted hght if

Zd\[nzz— n'sin®a = ki

Constructive interference occurs in reflected light and the destructive mterference occurs
n transmitted light if

2\ - nisinta = (2k+ 1)%

where d is the thickness of the film, 7, is the index of refraction of the film; ¢ is the
angle of incidence, A is the wavelength of the light and £=0,71,2, ... .

56




Diffraction grating:

The grating equation for principal maxima:

sing = %& m=012,...

Polarisation of light:

A linearly polarised light wave is a wave in which all vectors of intensity of the electric
field are oriented in the same direction.

A circularly polarised light wave is a wave in which the endpoints of the vector of
intensity of the electric field rotate in a circle.

Complete polarisation by reflection is described by Brewster’s law:

n,
lgor, = 2

1
where a3 is the angle of incident light (called Brewster’s angle) for which complete
polartisation occurs.

Problem 3-1. For a nonconducting homogeneous and 1sotropic medium, prove the
existence of electromagnetic waves and find the velocity of their propagation.

Solution: To prove the existence of electromagnetic waves we will dernive the wave
equation for the electric and magnetic component of the wave, and from companson
with the general wave equation we will find the velocity of propagation of each
component of the wave.
For a nonconducting homogeneous and isotropic medium we can write:

conductivity o= 0,

volume density of electric charges p= 0,

D=¢E and B=puH.
Substituting these assumptions into the differential form of Maxwell’s equations we
obtain:

FE * OH

Vx H= £ 1 Vx E= — u-—— 2
« H= & (1) x n @
V.E=0 (3) V.H=0 (4)

Taking the first derivative of Eq.1 and reversing the order of derivation we have

v 2L _ Lk )

ot ot
Substituting Eq. 2 into Eq.5 we obtain
. J°E
V x (Vx E):~—,ugﬁtz (©)
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From vector analysis we can use the following identity
Vx (Vx E)= V(V.E)- AE

Taking into account this identity and Eq. 6 we can write

. : O°E
V(V.E)- ME =~ ne o
With respect to Eq.3 we therefore obtain
. ’E
AE = ue Fy (7

We can now repeat the same procedure starting from Eq.2. If we take the first dertvative

of this equation, and substitute for %l;—: from Eq. 1 we have

AH:M;ZZ. (8)

Egs. 7 and 8 have the form of wave equations. Hence each of the components of the

electromagnetic wave is described by the wave equation, therefore the existence of

clectromagnetic waves has been proved.

To find the velocity of propagation of these waves it 1s sufficient to compare Eq 7 and 8

with the general wave equation. From this comparison we find that the electric and

magnetic components of electromagnetic wave propagate with the same velocity, or
1

The

where 6= g,¢, and p= pyp,. For a vacuum we have ¢, = u, = 1, consequently
the velocity of electromagnetic wave propagation 18

©)

V=

1

= L= = 3x 10% m/s. (10)
Jie g AJamx 1077 x 885x 107"

V= ¢,

The velocity of electromagnetic waves in a vacuum is a certain ultimate speed. We can
rewrite Eq.9 into the following form

¢
Ny
Taking into account that for nonconducting media =/ and & >I we see that the
velocity of electromagnetic waves in these types of media is

= S (12)

Problem 3-2. Prove that an electromagnetic wave is a fransverse wave.
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Solution: The wave equations which we derived i problem 3-1 describe all types of
electromagnetic waves in a homogeneous isotropic medium without charges and without
permanent magnets The most important and at the same time the simplest type of
electromagnetic waves are so called plane waves, the wavefronts of which are planes. In
fact most waves that are sufficiently far from the source can be considered as plane
wWaves.

Let us assume that we have a plane wave travelling along the x axis, hence the wavefront

is perpendicular to this axis. Thus the vectors E and H are the functions of x and # only,
or

E= E(x1) and H= H(x1) (13)
Wave equations can therefore be rewritten into a sumpler form

3’E J’E é'H J'H

. = K& = UE—5 14

o P or o HOTar {19

For further calculation it is useful to write Maxwell’s equations 1-4 into components.
The wave is a plane wave. Therefore following Eq. 13 partial derivatives with respect to
yand zequal zero. Maxwell’s equations therefore have the following form:

0= iffx (18) | 0= —i,%« (22)

From Eqs. 15 and 21 it is obvious that the first denivative of £, both with respect to
time ¢ and with respect to x equals zero. Since for plane waves travelling along the

direction of the x axis no component of E and H can depend etther on y or on z
obviously £, must be constant. We can arrive at the same conclusion for 77, from Eqgs.
18 and 22. A constant electric and magnetic field can be produced by electric charges or
permanent magnets, respectively. Since following our assumptions there are no charges
or permanent magnets, both £, and H, equal zero.

For the plane electromagnetic wave travelling along the x axis we arnved at the
conclusion that

E.=0 (23)
H,=0 (24)
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We can therefore conclude that the nonzero components of the electromagnetic wave
are only E,, E., H, and H, which are perpendicular to the direction of wave
propagation. Hence an electromagnetic wave is a transverse wave.

Problem 3-3. Find the relation between the components of vectors F and H for a
plane electromagnetic wave.

Solution:  To find the components of vectors E and H for a plane electromagnetic
wave it is necessary to rewrite into components the wave equations expressed by Eq. 14:

5E, 5, 5 H, 5°H,
o M0 ar @) o HPTar )
J’E, G°E, 2’H, 2°H,
axt M Tar (26) o MPTar @)
5E, 5E, 6°H, 5°H,
o 1T @7 ox M ETar ()

If we restrict our considerations to the case of a wave travellng along the positive
direction of the x axis only, the solution of these equations is the followng:
A Equations 25 and 28 (taking into account that an electromagnetic wave 1s a
transverse wave):
E.=0 H,=0
B. Remaining equations:

E, = Ey(z— .’3 H, = H, ':,z- %
(31
E, = Ez[z— x) Ho- H, i- z
c \ o
where E, ,E,, H, and H, are arbitrary functions of the argument ;/\z— —t : These
C

functions must at the same time obey Maxwell’s equations for a plane wave, 1e Egs. 15
_ 22 Hence we can arbitrary choose only two of them and the remaining two have to be

found from Maxwell’s equations.
7 N

/
] X H X'
Let us therefore assume that we know E, l\t— —J and E, t- — . Thecomponent
c \ c/

of magnetic field strength /. can be found from Eq. 16 (or Eq. 20):

JH F ’r/ _‘\"c
= Zzg—é)—'Ey(t—i):gE.tflj
ox é‘ZL c 7 c/
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Integrating this equation we obtain.

H= - ¢f Ey’(l~ 394“ C

- e X

To solve this integral we use the substitution ¢= (Z— —j. Thus we have
c

dx= - cdg. The integration constant C constitutes the static component of the

magnetic field, which equals zero because there are no charges and no permanent
magnets.

dE | "
H, = 50] *—‘;—q(—@dq: £ cEy(z~ %]: \/'EEJ,(I- %}

U

Similarly from a known component of electric field E, (Z - BC—J we can find from Eq.
¢
17 (or from Eq. 19) the component of magnetic field strength /-
m,= - [2E[ 2]
7 ¢
Finally we can conclude:

Hz = \/'EE}/ H)/ = EEZ (32)
“ Vou

For a wave travelling in the opposite direction we can obtain the following results:
H,= - | —E H, = [—E (33)
Problem 3-4. Calculate the characteristic impedance (wave resistance) of the plane

electromagnetic wave in a vacuuin.

Solution: The electric component of an electromagnetic wave travelling along the
positive direction of the x axis can be expressed as

E = jEy+ kE,

The magnitude of intensity of the electric fieldis £ = [ E? + E!

Similarly for the magnetic component we have H= jH 5+ kH p

H= JH'+ H = V/—%1/EZZ+ E? = \/E—E

The ratio — = .| 2 fora given medium is constant, and it is called the characteristic
&

impedance. For a vacuum it has the following value:

A ~ 7
E_ [pe Az x 10 4pq
£ | 885 x 10
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Problem 3-5. Prove that the electric and magnetic field vectors in a plane wave are
perpendicular to each other.. Assume a wave traveling along the positive direction of the

X axis.

Solution: We can find the angle between yectors E and H for a plane electromagnetic
wave using the properties of the dot product of two vectors:

E‘ﬁ: E.Hcosa
Thus we have
A (JE, + kE,) (jH, + kH,
EH EH

cosSax =

For components /1, and H, we can substitute from Egs. 32. Thus we obtain:

EH

) (- EE + E},EZ)\[i »
EH

Hence we arrive at the conclusion
that, for a plane electromagnetic
wave, vectors E and H are
perpendicular to each other. These
two vectors are oriented in such a
way that the resultant vector given
by the cross product of these two
vectors points in the direction of the
wave propagation. The position of
vectors F and H can be seen in the
figure. The positive direction of the
x axis is inward.

Problem 3-6. Calculate the intensity of a lmearly polarised plane stnusoidal
electromagnetic wave traveling along the positive direction of the x axis.

Solution: We can express Poynting’s vector for a linearly polarised plane sinusoidal
electromagnetic wave traveling along the positive direction of the x axis as '

j k
iy E|= i(EH, - EH,)= f\/%(55+ E)= ?\/'%EZ
H
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We see that Poynting’s vector has the same orientation as the positive direction of the x
axis. For a linearly polarised plane sinusoidal wave, both components of the intensity of
the electric field are in phase, but they can have different magnitudes. Thus we can write

( .
E, - Asino (z~ fj E,= Bsina |1~ 1}
c C

For Poynting’s vector we therefore obtain

S= ;\[%(A2+ Bz) sinza)(z— %}

The intensity of the wave is given by the following expression
I T
I=— f Sdt
T 0

Substituting for Poynting’s vector we obtain

i o L e - X By
1= jo Sdt= - ;(A2+ BZ)jO sin w(l— zja’z: 5\[;(A"‘+ B’)
Notice:
r 2 N e cosZa)[z— 23 o7 [
J; sin CO(Z— ;}dli jo > dt = b -2-_[0 COsS2 @ kl~ Zjdl:
_ T
2

Problem 3-7. Calculate the intensity of the nonpolanised sinusoidal electromagnetic
wave travelling along the positive direction of the x axis.

Solution: For a nonpolarised plane sinusoidal wave the y and z components of the
intensity of the electric field are not in phase, and they can have different magnitudes.
Thus we can write:
E, =0
%
E, = Asino (2% EJ EZ:Bsin{ w(l— %)+ ga}

C

For Poynting’s vector we have

i

&= Vf% E*i= VE{Azsinza)(t—v %)+ stin{a)(z~ %)+ ¢}}f
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1 3 ; E{M«f > vl
o = f Sidt= —4 w—(/{’ + B )
T”, 2y u
Comparison with the expression for the intensity of the polarised wave shows that both
expressions are the same. Hence we can conclude that the intensity of the wave does not
depend on the phase shift between the components of the intensity of the electric field,

which are perpendicular to each other.

Problem 3-8. Solar electromagnetic radiation intercepted by the earth has an average
energy flux /353 Jis.r’ (assuming that the surface is perpendicular to the energy flow).
Calculate the effective values of the intensity of the electric field and the magnetic field

strength.

Sclution: The earth’s radius 15 very small in comparison with the distance from the sun,
so we may assume that the radiation is in the form of plane waves by the time it reaches
us. The power transmitted by radiation per unit area is in fact equal to the average value
of Poynting’s vector, for which we have obtained (see problem 3-6):

£

L& _»
S= |—E"
\ o
The average value of the transmitted power 1s equal to the intensity of the wave for
which we have obtained

I= }]; f Sdt

Substituting for S we have

i
[= [ Sat= > | B
r o \ # i
Taking mnto account that
3 ! / 5 E':-‘»" *f ;—;
e and i AR o
T, L, Y
we can witte
e T
[= | —E,=E H,= | = H
¥[ ;! e 4 % q g el

Hence for effective values of the electiic and magnetic component of the wave we obtain
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Problem 3-9. Find the angle of incidence & for which complete polarisation of
reflected light occurs.

Solution. 1f unpolarised light strikes a non-metallic matertal such as glass or wate, the
wave becomes partially polansed by reflection.

The Figure shows an unpolarised light beam, incident on a sheet of glass at angle of
incidence & The components of the
vector of mtensity of an electric field
in the plane of incidence are
indicated by short lines, and points
indicate the components
perpendicular to the plane of
incidence. It is found by experiment
that the reflected light is partially
linearly polarised, 1.e. the vectors of
an intensity of electric field pomnt m
all directions normal to the direction
of propagation, but the amplitudes of
these vibrations are greater parallel
to the surface of the glass ( i.e.
normal to the plane of the paper)
than they are at right angles to the
plane.

However for one particular angle of incidence ¢, called Brewster’s angle, the linear
polarisation produced at the reflected light 15 complete. This occurs when all the
components of the vector of the intensity of an electric field not parallel to the surface of
the glass are refracted through the glass, and only the parallel components are refracted.
The angle for which complete polarisation occurs can be found from Fresnel's formulae,
which describe the conditions of polarisation among incident, reflected and refracted
waves.

Thus for components of the intensities of the electric field of the mncident (/) and
reflected (F,,) waves polansed in the plane of the paper we have

Reflected light,
completely polarized

incident light,
unpolarized

E, = E,un(6- 6, ) co(d+ 6, )

where @ is angle of incidence and 6, i1s angle of refraction. For complete polansation
F5, must be equal to zero, hence
Gp: Bz, -0

We see that, for this case, the incident and refracted beams are perpendicular to each
other. Substituting this result into Snell’s Jaw we obtain

sind ,, siné siné . n,
e S = = £ - tanf,= —~= n
sinf,, sin(90°~ 4,) cosé, n,

where # is the index of refraction of medium 2 with respect to medium /. Equation

tanf, = n
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is called Brewster’s law.

Problem 3-10. A monochromatic light of wavelength A falls on a narrow slit of width
w and then on a screen a large distance L from the slit. Calculate the coordinates of the
points at which we find dark fringes in the single slit experiment.

Solution: The Huyghens’ wavelets that go straight through the sht will arrive at point P
on the screen in phase, and will
produce a bright central image of the
slit. To find the positions of the dark
fringes 1.e. coordinates y, of points
0, we have to find the ponts at
which the Huyghens’ wavelets from
different parts of the shit cancel out,
because they travel different
distances and arrive at the screen
180° out of phase These are the
positions at which each Huyghens’
wavelet has superimposed on it
another wavelet which is 4/2 out of
phase with 1t.

Let us divide the slit into two zones, a top half and a bottom half, and consider the
superposition of Huyghens” wavelets, one from the top half and one from the bottom
half, arising at points separated by a distance w/2 across the slit. If point Q; 1s chosen as

14

indicated above, then a wavelet from s; will cancel a wavelet from s at Q. We can
therefore wrnte for the first dark fringe

s5in@’ = &
W

T ol

Since angle @ is very small we can also write sin@’ = tan®’ = % Combining these
two equatibns we obtain for the coordinate of the first dark frmge
LA

w
In a fashion similar to that used for the first dark fringe we find that dark fringes occur at
distances

M=

LA S
Y, = Be— where 7 is an integral number.

w

Problem 3-11. A monochromatic light of wavelength A falls on two slits separated by
distance d and then on a screen a large distance x from the slits. Calculate the co-
ordinates of the points at which we find dark and bright fninges in the double slit
expertment.
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Solution: Huyghens’ wavelets produced by diffraction at the slits combine to form
cylindrical wavefronts (because of the long narrow slits) and these wavefronts are
superimposed on the screen. This leads to constructive and destructive mterference,
depending on the path difference between the wavelets from the two slits, and hence to
bright and dark vertical fringes on the screen.

To find the co-ordinates of the dark and bright fringes we have first of all to determine
the path difference between the wavelets from the two slits. The first wavelet coming
from the slit S, has to travel the path I, to reach point P. The second wavelet coming
from slit S, has to travel path I to reach point P. The path difference & is therefore

2 2
o e (g (5

r d 2 % d\ 2 % )
= x{| 1+ 20 e 2t
x J x
g To simplify the previous expression
we may apply a binomial expansion
P(x,y) (11“ a)n = 1+ nat

nin-1) |,
/screen + (ZX 1 )a +
In reality the distance d between the
slits and the positions y of a point P
X are very small compared to the
distance x between the slits and the
screen, consequently

C{x,0)

i

1 : ;
! Yy
| :

| X | J
We can therefore restrict the polynomial expansion to the first two terms only. Thus for

the path difference we have:

2 g \27]
S~ X{I“F i(ZJr i} BRI 1y di ], dy
L 2

x  2x s 2w J x
The ¥ co-ordinate of point P at which we observe interference is

X
- 25
Y=
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The bright fringes will occur at points where the path difference 8 is equal to the even
multiple of half of the wavelength, or 3

5= 2k where k= 0,1,2, ...

2
Thus for the co-ordinates of the bright fringes we have
x _
Yorgne = kA E

The dark fringes will oceur at points where the path difference § is equal to the odd
multiple of half of the wavelength, or

5= (2k+ 1)112- where k= 0,1,2, .
Thus for the co-ordinates of the dark fringes we have
x A
=(2k+ 1) — =
ydmk ( d 2
For the distance between two neighbouring dark (bright) fringes we obtain
X
Ay=—4
YT

The pattern which will be seen on the screen will consist of alternating dark and bright
fringes, symmetric about a central bright fringe (the central maximum).

Problem 3-12. A beam of parallel rays from a medium of refractive index n; is incident
at an angle a upon one surface of a glass plate of cefractive index . The thickness of
the glass plate 15 d. Investigate the interference in reflected and transmitted light.

Ny, > Ny

Solution:

1. Interference in reflected light.

The incident rays { beam 1 and 2) are in part reflected (beam 1 into 17) and in part
refracted ( beam 2) at the upper surface of the plate. The refracted ray, after reflection
from the lower surface of the plate, emerges after refraction at the upper surface in a
direction paralle] to that of the reflected rays from the upper surface (beam 27).
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These two rays {(beams 1° and 2’) will produce destructive or constructive interference
depending on the path difference. Let us calculate geometrical path difference § The
Figure shows that

§=CE+ED=CE+ EF=CF=26cosf}

Since we shall compare the geometrical path difference with the wavelength A which is
given for a vacuum, we must express the path difference for a vacuum as well. When a
light wave travels from one medium to another, its frequency does not change but its
wavelength does, as follows:

lzfvzt_vani

A

If medium 1 is a vacuum or air we put »; = [ and A, = A Then the wavelength in
another medium of index of refraction n; will be

WM B

Hence to obtain the path difference §° corresponding to a vacuum we have to multiply
the geometrical path difference & by index of refraction n,. Thus we have

6'=06n,= 2dn,cosff
In the calculation of the path difference & we have also to take into account the fact
that the wave reflected on the upper surface 1s reflected by a material whose index of
refraction is greater than that in which the wave travels, and thus the wave phase
changes by 780° This change of phase corresponds to the path difference 4/2. Thus for
the path difference ¢“ we have

o' = 2dmn,cos f+ i;—

Since the angle of incidence ¢ is easier to measure than the angle of refraction f it 1s
useful to introduce the angle «. into the expression for the path difference. To do this we
use Suell’s law
nsina = n,sinf
Taking the square of this equation we obtain
n'sina = n sin” B= n, (l# cosz,B)

and after a Iittle rearrangement

nycosf= o nl - ntsin’a
Substituting this into the expression for the path difference we have

&= Zd\/nf— n’sin’ a + -;21

If this path difference is equal to the even multiple of halves of the wavelength, that is

o' = Zk% where k= 0,12 ...

constructive interference occurs in the reflected light. Hence the condition for the
constructive mterference in reflected light is

Zd\/ng‘ - nlsin’a = (2k+1)%
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If the path difference &° is equal to the odd multiple of halves of the wavelength, that 1s

o' = (2k+ l)% where k= 0,1,2 ...
destructive interference occurs in the reflected light. Hence the condition for destructive
interference in reflected hght 1s

Zd\[nf— n'sina= ki

1. Interference in transmitted light.

Since for transmitted light there is no reflection on the optically denser medium, there is
no change in the phase of the wave. Thus for the path difference in transmitted light we
have

o e ZdV/ n - nsin’ a
If this path difference is equal to the even multiple of halves of the wavelength, that is
o' = 2k% where k= 0,1,2 ...

constructive interference occurs in the transmitted light Hence the condition for the
constructive interference in transmitted light 1s

2d\ nl - n’sin’a = Zk%

If the path difference &° 1is equal to the odd multiple of halves of the wavelengths, that 13

o' = (2k+ 1)i where k= 01,2 ...
2

destructive interference occurs in the transmitted light Hence the condition for the
destructive interference 1n transmitted light 1s

2d\/n22— n’sin’a = (2k+ 1)22

Problem 3-13. Monochromatic light falls on a diffraction grating as shown in the figure.
Find the criterion to produce the brightest maximum.

Solution: We assume that parallel rays of light are mcident on the grating, as shown in
the figure. We also assume that the
slits are narrow enough for the

Al=d sin® diffraction by each of them to spread

’
/
g &
’

light over a very large angle on to a
distant screen behind the grating,
and for mterference to occur with
light from all the other slits. Light
rays that pass through each slit
without deviation (@ = 0 ) interfere
constructively to produce a bright
spot at the centre.
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At an angle @ such that the rays from adjacent shits travel an extra distance Al = mA ,
where m is an integer, again constructive interference occurs. The mteger m is called an
order of the pattern. Thus the criterion for producing the brightest maximum 1s

singp—m—jL
=

where d is the distance between slits. These brightness maxima are much sharper and
narrower than those for a double sht.

Problem 3-14. A diffraction grating with 10 000 lines/cm is 1lluminated by light of
400 nm and 700 nm wavelengths. Calculate the first and second order maxima for this
light.

Solution:Since the grating contains [ 0° lines/m, the separation between slits 18
Ix 10~ ¢ m . Hence for the first order maxima the angles for given wavelengths are

-7 = 7
ST o Ix 4% 10 0400 S o Ix 7x 10

— 2 = 0700
Ix 10 Ix 10

and thus @y = 23.6° and @ = 44.0 ° For the second order maxima we have " W

‘ 2% 4x 1077 . 2x Tx 1077
SINQ 400~ W: 0800 SINQ 450= ——1;—10-_—6-‘": 1.400

For the 400 nm wavelength for the angle of the second order maximum we therefore
have @uo = 53.0° For the 700 nm wavelength the second order maximum does not
exist, since sing cannot exceed 1. No higher order maxima will appear.

Problem 3-15. At what angle must light be incident on a piece of borosilicate crown
glass, with an index of refraction /.52 to produce completely polarised light by
reflection?

[ 6, = 57]

~ Problem 3-16. Coherent light of wavelength 589 am  from a small region of a sodium

arc light falls on a double slit with a slit separation of 0.10 nm. The interference pattern 1s
produced on a screen 2.5 m from the slit. Calculate the separation on the screen of the
two fourth-order bright fringes on either side of the central image.

[ 23 = 118 om)
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