2 WAVE MOTION

The study of wave phenomena is very important since it occurs in many areas of physics.
In this chapter we will concentrate on mechanical waves — waves that travel in a material

medium.

2.1 Description of Wave Motion

First, let us consider a single pulse which can be formed on a rope by a quick up and down
motion of its end. If the hand pulls up on one end of the rope and because the end piece is
attached to adjacent pieces, these also feel an upward force and they also begin to move
upward. We say that the wave moves along the rope.
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Figure 2-1

The source of a travelling wave pulse is a disturbance and cohesive forces between
adjacent pieces of rope which cause the pulse to travel. If the source vibrates sinusoidally
in the simple harmonic motion, the wave itself, if the medium is perfectly elastic, will have
a sinusoidal shape both in space and in time.

To describe a periodic wave we introduce some of the important quantities (see Fig.2-2).
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The high points on a wave are called peaks., the low points troughs. The maximum height
of a peak or depth of a trough relative to the equilibrium level is called the amplitude of
the wave. The distance between two successive peaks is called the wavelength A . It is
also equal to the distance between any two successive identical points on the wave.
The number of peaks that pass a given point per unit time is called the frequency f. It is
also equal to the complete cycles of a given point. The period 7 is equal to the reciprocal
value of the frequency 7'=1/f.

The velocity of a wave v is the velocity at which, for example, peaks appear to move. This
velocity is often called as the phase velocity. We must distinguish the velocity of a wave
from that of a particle motion.

A wave peak travels a distance of wavelength A in period 7. Thus the velocity of a wave

v is equal to v=—%=ﬂf . (2-1)

We will assume, of course, that v does not depend on A or f unless otherwise stated.
From the last expression we have A =v7T and we can also say, that the wavelength A is

equal to the distance travelled by the wave in a time of the one oscillation, that is, in a time
equal to one period 7.

The velocity of a wave depends on the properties of the medium in which it travels. For
example, the velocity of a wave on a stretched string depends on the tension in the string 7
and on the mass per unit length x of the string by the relationship

BE. | , (2-2)

y7i

If the particles of the medium (such as a rope) vibrate up and down in a direction
perpendicular (transverse) to the motion of the wave itself we call such a wave
a transverse wave. But if the vibration of the particles of the medium is along the same
direction as the motion of the wave, such a wave is called a longitudinal wave.
The longitudinal wave is characterised by compressions and expansions that propagate
along the spring that correspond to the peaks and troughs of a transverse wave.
An important example of a longitudinal wave is a sound wave in air. The wavelength of
a longitudinal wave is the distance between successive compressions (or expansions). Its
frequency is the number of compressions that pass a given point per second. And its
velocity is the velocity with which each compression appears to move and is equal to
the product v=A4f .

The velocity of a longitudinal wave has similar form as Eq.2-2. For a longitudinal wave

travelling along solid rod v= 3 , (2-3)

Yo,
where E is the elastic modulus of the material and p is its density.
For a longitudinal wave travelling in a liquid or gas

e - (2-4)

P
where K is the bulk modulus and o again the density.

The waves can be also classified according to their polarisation. If all particles vibrate in
the same plane we say that a wave is polarised. In Fig.2-3 we have examples of vertically
and horizontally polarised waves.
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Figure 2-3

The polarisation plane is defined as the plane perpendicular to the plane in which
particles vibrate. Polarisation is only possible with transverse waves. In the longitudinal
wave the particles vibrate in the direction in which the wave travels and that is why there is
no sense to talk about polarisation plane.
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Figure 2-4
26




2.2 Energy Transmitted by Waves

As waves travel through a medium the energy is transmitted from particle to particle and
thus, waves transmit energy from one place to another. For a sinusoidal wave of
frequency f the particles move in the simple harmonic motion. An energy of each particle

motion equals B= %kA2 ,

where 4 is the amplitude of its motion (see Eq.1-19).
Using Eq.1-12 gives us the formula

E=2n"mf?4* (.
For the wave travelling in an elastic medium, we take m= pV’, where p is the density of
the medium and V is its volume. If the wave travels the distance / in a time 7, then /=uvt,
where v is the velocity of the wave. The volume ¥ can be now expressed as V=381,
where S is the cross-sectional area through which the wave travels.
Thus m=pV=pSl=pSvt
and K= 27:2,0Svtf2A2 {1 . (2-5)
Eq.2-5 represents the energy passing through the cross-sectional area S perpendicular to

the direction of energy flow in a time 7. We see that the energy transmitted by a wave is
proportional to the square of the amplitude.

The average rate of energy transferred is the average power B

P= -It'i =27%pSufid®  [W]. (2-6)
The average power transferred across unit area perpendicular to the direction of energy
flow is referred to as intensity / of a wave

/= -§ =27%puf?4*  [Wm?]. (2-7)

Thus, the intensity is defined as the energy transmitted by a wave per unit time across unit
area and, as we see, is proportional to the square of the wave amplitude.
If the wave flows out from the source in all directions it is a three-dimensional wave. As
an example we have sound travelling in the open air. Such the wave is spherical in shape
and is said to be a spherical wave. Thus wave is spread over the area of a sphere the value
S = 4712 of which increases. Because energy must be conserved, we can see from Eq.2-5
that as the area S increases the amplitude 4 must decreases.
Thus, for two different distances # and 7, from the source we can write equality
47rr12A12 = 47zr22A22

n A
or L S i B (2-8)

n 4
where 4, and A4, are the amplitudes of the wave at A and r,, respectively.
Thus the amplitude decreases inversely as the distance — at twice distance the amplitude is
half.

Since the intensity / is proportional to A? (see Eq.2-7), it must decreases as the square of
the distance:

o S o (2-9)



where /; and I, are the intensities of the wave at 1 and 7, , respectively.

In practice, frictional damping is present and some of the energy is transformed into
thermal energy and the decrease of the amplitude and intensity will be more greater.

Note: for a one-dimensional wave (as a transverse wave on a string or a longitudinal wave
travelling along a metal rod) the area S remains constant and so the amplitude as well as
the intensity also remain constant.

2.3 Representation of Travelling Wave

We consider a one-dimensional wave travelling along the x axis and we assume the wave
shape to be a sine curve. Let wavelength of the wave be A and its frequency be f.
We suppose the oscillations of the point x =0 to be given by

u(®)=Usinot , (2-10)
where @ =27 f is the angular frequency of the wave.
Let us now suppose the wave moves to the right with velocity v. After a time 7 it has
moved a distance x =vt. To describe the oscillations of this point whose distance from

the x = 0 is vt we must replace ¢ in Eq.2-10 by (z‘ - -{] :
v

u(x,)=U sina)(t—i‘-) =U sin(mz——“-’-’f): U sin(wt —kx) (2-11)
v v
where & :Qz%—r—z—z—ﬁ- is called the wave number. The quantity (wf—kx) is called
vy

the phase of the wave. The velocity v of the wave, which is often called the phase
velocity since it describes the velocity of the phase of the wave, can be also written in
terms of @ and &:

v=Af= rno o

k 2 k

Eq.2-11 is the mathematical representation of a sinusoidal wave travelling along
the x axis to the right. It describes the displacement of the wave at any point x at
any time £.
Note: For a wave travelling along the x axis to the left Eq.2-11 has form

u=Usin(wt+kx) .

, % . : . :
Let us rewrite now the argument (t——) in Eq.2-11 for a three-dimensional wave into
v

more useful form. The position of the vibrating particle (in one-dimensional case x) will be
given now by the position vector r:
r=ix+jy+kz .
The direction of the wave propagation will be given by the unit vector s in the direction
of the wave propagation:
s=is, +js, +Ks,.
Thus we can write for the wave vector k

k=ks , where k = Z'f is the wave number
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For the argument of the function describing three dimensional wave we can therefore
write:

wt—k-r:wt—ks-r:w(t—is-r):w(t—y—ls-r)w(t—zsm):a)(t—s—{j.
@ A 27 A v

Thus, we can write for three dimensional wave

u:Usinw(t—s—[) : (2-12)

v

This is valid for sinusoidal wave — for wave of any shape we will not specify the shape of

the function and we write: w=jf (t = s_n;) : (2-13)
v

2.4 Wave Equation and Superposition Principle

Let us consider the general class of functions u(x, #) = flix—vf) and u(x, £) = f{x + vi), where f
is any differentiable function of x and 7. Let the quantity (x— v/) be represented by z
(so z=x-ut). If u(x, f)=fx-vi), we use chain rule for derivatives and find:
ou 0Of0z O
o - _i__ - _}i (_v) ,
0t 0z 0t Oz
2 2 2
; 0
Ql:é. _.v_ai :_vafzz Zaf ; (a)
orr o\ oz o2 ot oz°
Sty ou_of 8 _0f
Ox 0z Ox Oz
Fu_of
oxt 8%

(b)

Comparing Eqs.(a) and (b) gives
Pu 1 *u
ox?  v* or
where v is the wave velocity. (For u(x, f) = f{x+ vf), the result is the same.)
Equation (2-14) is the one-dimensional wave equation that applies to waves in one
dimension only. For waves spreading out in three dimensions the wave equation will be
*u  u T wid &*u
ox? 8 y2 02 v* of
The wave equation is a linear one. If # (x,7) and u, (x,7) will be two different solution of
the wave equation, then the linear combination
uy (x,1) = aw +buy ,
where @ and b are constants, will be also a solution. This is the essence of
the superposition principle which says that if two waves pass through the same region of
space at the same time, the actual displacement is the sum of the separate displacements.
The principle is valid for mechanical waves as long as the displacements are not too large,
that is, as long as there is a linear relationship between the displacement and the restoring
force of the oscillating medium. If the amplitude of a mechanical wave, for example, is so

(2-14)
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large that it goes beyond the elastic region of the medium and Hook’s law is no longer
held, the superposition principle is no longer held.

3

sum of all three

Figure 2-5

Fig.2-5 shows the application of the superposition principle to three waves of different
amplitudes and frequencies. At the instant shown, the actual amplitude at any position is
the algebraic sum of the amplitudes of the three waves at that position. The actual wave, as
we see, is not a sinusoidal wave and is called a complex wave.

Notes: 1) Any complex wave can be considered as composed of many simple sinusoidal
waves of different amplitudes, wavelengths and frequencies. This is known as Fourier’s
theorem. A complex periodic wave of period 7 can be represented as a sum of pure
sinusoidal terms whose frequencies are integral multiples of f =1/7. If the wave is not
periodic, the sum becomes an integral — called Fourier integral.

2) When the restoring force is not proportional to the displacement for mechanical waves
in some medium, the velocity of waves depends on the frequency. This is called
dispersion. The different sinusoidal waves that compose a complex wave will travel with
different velocities in such a case and a complex wave will change shape if the medium is
dispersive.
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2.5 Reflection and Refraction of Waves

Reflection

When a wave strikes a boundary some of its energy is reflected and some is transmitted or
absorbed.

First, we will consider a one-dimensional wave travelling down a rope. If the end of
the rope will be fixed the reflected wave is inverted and it will be 180° out of phase with
the incident wave. If the end is free the reflected wave is not inverted and it will have no
phase change.

Secondly, for a two or three dimensional wave we consider so-called wavefront by which
we mean the line or surface of all points having the same phase. A line which has
the direction of wave motion and is perpendicular to the wavefront is called a ray.

incident ray : reflected ray
x‘ i K
X 5 igf
N o/

incident
wave front

reflected
wave front

Figure 2-6

In Fig.2-6 ¢, represents the angle of incidence which is defined as the angle the incident
ray makes with the perpendicular to the reflecting surface (we see that it is also equal to
the angle the wavefront makes with a tangent to the surface). The angle of reflection @, is

the corresponding angle for the reflected wave.
The law of reflection states that the angle of reflection ¢, equals the angle of incidence

;.

Important note: when the wave strikes the boundary between the two media, part of its
energy is reflected and part of energy is transmitted. If the second medium has a greater
density than the first, the less energy is transmitted and the reflected wave will be 180° out
of phase with the incident wave.

Refraction

When a wave passing a boundary into a medium where its velocity is different
the transmitted wave will move in a different direction than the incident wave. Such
a wave is called the refracted wave.

Let us now consider wavefront OA of the incident wave in Fig.2-7. Let v; and v, be
wave velocities in the medium 1 and the medium 2, respectively, and let ¢; be the angle of
the incident wave.
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The wavefront OA gets from the point A to A’ in a time 7 = . In the same time, this

Y
wavefront gets in the medium 2 from the point O to O’ and it travels a distance OO0’=v, 1.
For triangles OAA’ and OA’O’ we may write:

il A B

P=ox o4

00 vt

and Sin ==_-—==2-_—-
2707 o4

Dividing these equations we find the law of refraction

sin @2 _ U
sing; U

4

where @, represents the angle of refraction.
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2.6 Interference of Waves

Interference refers to the physical effects that will happen when two or more waves pass
through the same region of space at the same time.

Let us consider two one-dimensional waves of equal frequencies @, different amplitudes
U, #U, and different phase constant @ # @,. We shall suppose that the displacement

directions of the first and the second wave are the same and the waves travel down
a positive direction of x-axis. So, these waves will be described as follows:

w =U sin[w(t—£)+¢1:],
v
: x

uy =U, sm{a)(t——)—k ¢2}
v

where v is the velocity of the waves.
Using the principle of superposition gives the resultant wave

u=(Ucosp +U, cosgpz)sina)(t—g-)+(U1 singy +U, sin@)cosa)(t—%) . (2

The terms in parentheses are constants and we see that the resultant wave is also harmonic
with the same frequency. To find the amplitude and the phase angle of this resultant wave
we express it in standard form

u= Usin[a)(t—f)+ (p:‘ ,
v
or after easy arrangement

u =Ucoswsina)(t—£)+Usin¢cos[t—£) ,
v v

where U and ¢ represent the amplitude and the phase angle of the resultant wave. (b)
As Eqgs.(a) and (b) must be identically equal for any x and any 7 , we obtain the following
expressions:

Ucosp=U,cosg +U,cosg, ,

Using=U;sing; +U, sing, .

Dividing of these two equations we find the phase angle ¢
_Usingy +U, sing, . (2-15)
U, cosgy +U, cosp,

tgp

To find the amplitude U we square the equations and then we add them:
U? =U2 +2U,U, cos (@, —¢1)+U22 . (2-16)
From this result it is clear that the amplitude U depends on phase difference between

the waves.

Instead of the phase difference we use more frequently so-called path difference. It is
defined as the difference between the paths travelled by the waves from the source to
the point of interference. We now find the relationship between the phase difference
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and the path difference. We shall consider the one-dimensional wave of the sine course
with the angular frequency w.
The displacement at any point x and at any time # is described by the function u(x,?) of

two variables x and 7

u(x,t):Usinw(z‘——g—) , (2-17)

where U and v are the amplitude and velocity of the wave, respectively.
If we choose the fixed point X, the function u(xo,t) describes the oscillating motion at

this point x;, thus for x =x, we can write the function in (2-17)

u(t) =U sin (wt—wﬁj =Usin(wt-¢) ,
v

Xy . . .
where @ ==L is constant and represents the phase delay of the point x, with respect to
v

the point in origin. The greater distance of x, the greater delay ¢ .
Thus, for any point x we have the relationship

¢:a)£:—271-{:27z'—{ . (2-18)

The phase difference @, — ¢ of two waves of different phase angles (or phase delays) ¢,
and @, is now equal to

2
(p2—¢1=—/-;—[—(x2—x]) , (2-19)

A
or Xy—X = 5[—(97)2 -m), (2-20)

where (x, —x,) represents the path difference d =x, —x; .

Let us now return to the expression(2-16) in more detail.
If the phase difference
o, — @ =2kr, where ==0,1,2,...
or the path difference is equal to the even multiple of the half-wavelength
A

dZZkE , k=012,
The amplitude of the resultant wave will have its maximum U =U, +U,. This case is
called constructive interference. In constructive interference the wave are in phase.

If the phase difference
o—e=Qk+Dr, k=012,
or the path difference is equal to the odd multiple of the half-wavelength

d:(2k+1)% . k=012,...

the amplitude of the resultant wave will have its minimum

U ___<U1—U2 (lf U1>Uz)
UZ—U‘ (If U2>Ul) °

This case is called destructive interference. In destructive interference the waves are out
of phase by one-half wavelength or 180°. For the special case of U; =U, the resultant
amplitude I/ = 0 and this point will be at rest, that is, there are no oscillations at this point.
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2.7 Standing Waves

If we vibrate one end of a rope and the other end is kept fixed, a wave will travel down to
the fixed end and be reflected back. There will be waves travelling in both directions and
the wave travelling down the rope will interfere with the reflected wave coming back. If
vibrations of the rope will be at just the right frequency, these two waves will interfere and
a standing wave will be produced. Thus, a standing wave is the result of the interference
of two waves travelling in opposite directions. The points of destructive interference,
called nodes, and of constructive interference, called antinodes, remain in fixed positions.
Standing waves occur at more than one frequency. Fig.2-8 shows the standing waves
produced at the lowest frequency of vibrations and at twice and three times the lowest
frequency.

A-antinodes

N-nodes

Figure 2-8

The frequencies at which standing waves are produced are called the natural or resonant
frequencies, each of which is a integer multiple of the lowest resonant frequency.
The lowest frequency, called the fundamental frequency, corresponds to one antinode.

So, the whole length L corresponds to one-half wavelength, L :%Zl , Where 4; is

the wavelength of the fundamental. The other frequencies are called overtones which are
integral multiples of the fundamental and are also called harmonics, with the fundamental
are referred to as the first harmonic. The next mode after the fundamental is called
the second harmonic or first overtone and the length L corresponds to one complete

wavelength, L = 4, . For the higher harmonic, L = —;—/13, L =22, and so on.

In general, we can write L= n% , Where n=123,. .. (2-21)

The integer » labels the number of the harmonic.
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From Eq.2-21 we have Ay == 2L . m=L23. (2-22)
n

To find the frequency f of each harmonics we use f = % .

We have known that a standing wave can be considered as a result of the interference of
two waves travelling in opposite directions. Each of these waves can be described as
a function of position x and time #:

u, = U sin(kx— i),
uy =Usin (ke +wt).

We assume the amplitude are equal as are the frequencies and wavelengths.
The sum of these two travelling waves produces a standing wave

u=u +uy=2Usinkxcoswt . (2-23)
a+ﬁcosa;ﬂ ).

(We used the identity sina +sin = 2sin

From the result in Eq.2-23 we see that a particle at any position x vibrates in simple
harmonic motion because of the factor cosw? . We also see that all particles vibrate with

the same frequency f :—20—)— , but the amplitude 2U sinkx depends on x. (Compare this
Vs

fact to a travelling wave for which all particles vibrate with the same amplitude).

The amplitude of a standing wave has a maximum equal to 2U, when

kx=7—T-, —3—75, Eﬂ,.u

2 2 2
that is, at points xX= i, 3&, él (2-24)

4> 477 4
what are the positions of the antinodes.
The amplitude of a standing wave equals zero, when

kx=nr,. n=012,..

that is at points x=0 % A, 3%—,...,71% , (2-25)

what are the positions of the nodes.

Note: If two waves producing the standing wave have different amplitudes, we talk about
partial standing wave. The important feature of it is that its nodes are not motionless.
The amplitude of the vibrations of nodes is non-zero and depends on the difference
between the amplitudes of original waves.
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2.8 Sound Wave

The source of a sound wave is a vibrating object. The sound energy is transferred from
the source in the form of longitudinal sound waves. Sound cannot travel in the absence of
matter. That is why, for example, a bell ringing inside an evacuated space cannot be heard.
The speed of sound is different in different materials. In air at 0 °C sound travels at a speed
of 331.3 m/s. Generally, the sound speed depends on the elastic or bulk modulus and
the density of the material. For a longitudinal wave travelling in solids is given by

INE
U s—— ——a
Jo,
For gases and fluids is given by
v= 5 , (2-26)
Jo,

where E and K are elastic modulus and bulk modulus, respectively and o the density.
The value of the sound speed depends on temperature, too, but this is significant mainly for
gases. For example, in air the speed increases approximately 0,6 m/s for each Celsius
degree increase

v~(3313+06T) m/s ,

where T is the temperature in °C.

The human ear responds to frequencies in the range about 20 Hz to about 20 kHz which is
called the audible range. These limits can vary from one person to another. It is also known
that the higher age the lower upper limit of the audible range. Sound waves whose
frequency is outside the audible range cannot be heard. Frequencies above 20 kHz are
called ultrasonic. It is proved that ultrasonic frequencies can be heard by many animals (for
example, a dog can hear sounds as high as 50 kHz, a bat can detect frequencies as high as
100 kHz). Sound waves whose frequencies are below the audible range - less than 20 Hz —
are called infrasonic (for example, the waves produced by earthquake are infrasonic ones).
We have already known that a one-dimensional sinusoidal wave travelling along the x-axis
is represented by the relation describing the displacement at position x at time #

u(x,t) =Usin(kx-wt) , (2-27)

where U is the amplitude of the wave (or maximum value of its displacement), the wave
number kis related to the wavelength A by k=27/1 and @= 2xf, where f is

the frequency. For a transverse wave the displacements are perpendicular to the direction
of wave propagation. But for a longitudinal (sound) wave the displacement is along
the direction of wave propagation. That is, it is parallel to x-axis and represents
the displacement of a volume element from its equilibrium position. That is why

longitudinal (sound) waves can also be considered from the point of view of variations in
pressure rather than displacement. Therefore, longitudinal waves are often referred to as

pressure waves.
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We now describe the pressure variation in a travelling longitudinal wave. We know that
a pressure change p causes the fractional change in volume AV /V of the medium. This is
given by the relation (see Physics I)

AV
By el
p =

where K is the bulk modulus and p now represents the pressure difference from
the normal pressure in the absence of a wave. The negative sign relates to the fact that
the volume decreases (A} <0) if the pressure is increased. Let us now consider
a cylindrical layer of fluid of thickness Ax and area S through which the longitudinal wave
travels (Fig.2-9). Its volume is V' = S Ax.

L Ax <

< >
F ™ %,
Au i 33
direction of 1 I
wave propagation { =/ f i
% y 3 lj

Figure 2-9

The pressure variation in the wave causes the change in the volume by an amount
AV =S Au, where Au is the change in thickness of this layer as it is compressed or

expanded. Hence, we have

S Au
==K .
P S A
Taking the limit of Ax — 0 yields
ou
s
S

where it is used the partial derivative since « is a function of both x and 7.

For a sinusoidal wave the displacement is given by Eq.2-27. Then, we have for
the pressure variation
p=—(KUk)cos(kc—wt) . (2-28)

We see that the pressure varies sinusoidally as well, but is out of phase from
the displacement by 90° or a quarter wavelength. Where the pressure variation is
a maximum or minimum the displacement from equilibrium is zero and where the pressure
variation is zero the displacement is a maximum or minimum (Fig.2-10).
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Figure 2-10

The quantity KUk is called the pressure amplitude py, . It represents the maximum and

minimum amounts by which the pressure varies from the normal ambient pressure.
By using Eq.2-26 for the wave velocity we can express the pressure amplitude as

p,, = KUk = pv*Uk = 22pvUf
and Eq.2-28 can be expressed in the form
p=—ppcos(kx—at).

The intensity of sound is defined as the energy transmitted by a sound wave per unit time
across unit area and, as we saw, is proportional to the square of the wave amplitude.

The human ear can detect sounds with an intensity as low 1072 W/m® and as high as
1W/m?. 1n practice it is usual to specify sound intensity levels using a logarithmic scale.
The unit on this scale is a bel or a decibel (1dB = 0,1 bel). The intensity level g of any

sound is defined in terms of its intensity I, as follows

B(in dB):l()logi~ ,

Iy

where I, is the intensity of some reference level. Iy is usually taken as the minimum
intensity audible to an average person (threshold ~ of hearing) which is
Iy —~10"2 Wm™2 Thus, for example, the intensity level of a sound whose intensity
1=107"" Wm™ will be

-10
=20dB.

10
S =10log

Notice that an increase in intensity by a factor of 10 corresponds to a level increase of
10 dB. An increase in intensity by a factor of 100 corresponds to a level increase of 20 dB.
Thus, for example, 50 dB sound is 100 times more in intensity than 30 dB sound.
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2.9 Interference of Sound; Beats

As we saw, when two waves pass at the same time through the same space region, they
interfere. This is true of sound waves as well.

C
D
© 8
A B
Figure 2-11

Let us consider a simple configuration of two sound sources A and B as in Fig.2-11. Let us
assume the two sources are emitting sound waves of the same frequency and let them be in
phase. Let the curves in figure represent the peaks of waves from each source. We see that
at point C, which is the same distance from each source, constructive interference occurs
since both waves at the same time have compression or rarefaction. Generally, we can say
that constructive interference occurs at any point for which the difference of its distances
from both sources is equal to a whole wavelength. As for point D, the wave from source B
must travel a greater distance than the wave from A. Generally, we can say that
destructive interference occurs at any point whose distance from one source is greater

than its distance from the other by —;-/1 , %/1, %A

An interesting example of interference occurs if two waves of the same amplitude and
close in frequency but not the same meet at any point. We shall examine the interference of
these waves.

Let two waves of frequencies f; and f, be represented at a fixed point by

w =Usin2zr fit,.
u, =Usin2x fot .

By the principle of superposition, the displacement of the resultant wave, is

T {2U cos 27 (%—fz—)t} sin 27 (A;i)t . (2-29)

As a result we obtained a wave whose frequency is equal to the average frequency
(fi+/2)/2 of the two components and whose amplitude is given by the expression in
brackets. This amplitude varies in time from zero to a maximum of 2U with a frequency of
(/i /2)/2. A beat occurs when cos 27 [( h-£)/ 2:|t equals +1. So, we have two beats

per one cycle and thus the frequency of beats must be
2(——f1;f2): Fie= Fi (2-30)
Hence, the beat frequency is equal to the difference in frequency of the component waves.
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2.10 Doppler Effect

This effect, which occurs for all types of waves, relates to the change in wavelength and
frequency when a source of sound is moving toward or away from an observer.

We shall have a look at this effect in detail. We shall assume the air is at rest in our
reference frame.

In Fig.2-12a the sound source is at rest. The distance between two successive wake picks
is A. If the frequency of the source is f then the time between emissions of successive
wave peaks is equal to the period

T'=

2

1 2
f v
where v is the velocity of sound wave in air.

In Fig.2-12b the source is moving with a velocity v, toward stationary observer. In
a time T the first wave peak has moved a distance d=A4=vT . In this same time
the source has moved a distance d; =v,T .

The distance between successive wave peaks determines the new wavelength

¥=d=-d, =z—vsT=,1—us§=,1(1—”—5) |
v v

Thus, the change in wavelength

M:ﬂ,—ﬂ:—vs& "
v

AA is proportional to the speed v, of the source.
And the new frequency is given by

v v
f’ = ——’ =l e
Al
v
sorce moving toward
andsincelzf, = / _ .
A 1-Us stationary observer
v

f'> f, because of the denominator is less of 1.

source at rest
) o

a) b)

Figure 2-12
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If the source will move away from the observer the new wavelength will be

A =d+d,
and the change in wavelength will be
M=-1=u,2
v
and new frequency will be
Fé= f source moving away from
B 14.%. ' stationary observer
v

f' < f, because of the denominator is greater of 1.

Doppler effect also occurs when the source is at rest and the observer is in motion. In this
case the wavelength A is not changed but the wave velocity with respect to the observer is

changed. Let the observer move toward the source with a velocity v,. The wave velocity
relative to the observer is v' =v+v,, where v is the sound velocity in the still air.

Hence, the new frequency is

, U vty
S T 7
. v U observer moving toward
since A =— , f’:[1+—2)f. , :
f v stationary source

If the observer is moving away from the source, the wave velocity relative to
the observer is now v'=v-v, and

fe [ Uy ] 7 observer moving away
' from stationary source
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