4 GEOMETRICAL OPTICS

The ratio of the speed ¢y of light in vacuum to its speed c in a given material is called
the index of refraction » of that material:

CO
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The accepted value today for the speed of light in vacuum is 2.99792458x10° m s .
Usually we round this off to 3x10® m s when extremely precise results are not required.
In air the speed is only slightly less. In other transparent materials such as glass and water,

the speed of light is always less than that in vacuum.

4.1 Reflection of Light

When light strikes the surface of an object some of light is reflected. The rest is either
absorbed by the object and transformed to heat or, if the object is transparent like glass or
water part of it is transmitted through.

We define the angle of incidence o, to be the angle an incident ray makes with the normal

to the surface and the angle of reflection «, to be the angle the reflected ray makes with

the normal.
normal
. to surface
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Figure 4-1

For flat surface the incident and reflected rays lie in the same plane with the normal to
the surface and the angle of incidence equals the angle of reflection. This is the law of
reflection.

4.2 Formation of Image by Plane Mirror

In Fig 4-2 it is shown how an image is formed by a plane mirror. Rays leave each point on
the object going in many directions.

The diverging rays that enter the eye appear to come from behind the mirror as shown by
the dashed lines. The point from which the ray seems to come is one point on the image.
For each point on the object there is a corresponding image point.

Let us assume the ray that leaves the point A on the object and strikes the mirror at point
B. The angles ABD and CBD are equal because of the law of reflection and hence,
AD=CD and the image distance d; equals the object distance d, and the height of the image
is the same as that of the object.

Since the rays do not pass through the image, a film placed at the image would not detect
the image. Therefore, it is called a virtual image. As for a real image, the light passes
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through the image and therefore such the real image can appear on a film placed at
the image position.

Plane mirror

o
D C
d
Figure 4-2

4.3 Formation of Image by Spherical Mirror

The most common mirrors are spherical which means they form a section of a sphere.
A spherical mirror is called convex if the reflecting surface is on the outer surface of
the spherical shape and it is called concave if the reflecting surface is on the inner surface
of the sphere.

convex mirror concave mirror
Figure 4-3

To see how the spherical mirror forms an image let us consider the rays which are parallel
to the principal axis and falling on a concave mirror. The principal axis is defined as
the straight line perpendicular to the curved surface at its centre (Fig.4-4).

The law of reflection holds for each point when the rays parallel to the principal axis strike
the mirror. After reflection such rays will cross each other at a single point which is called
the focal point F of the mirror. Focal point F is the point in which the rays parallel to
the principal axis come to a focus. We can also say that the focal point is the image point
for an object infinitely far away along the principal axis.

The distance between F and the centre of the mirror, length FA, is called the focal length f
of the mirror.
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How do we calculate the focal length f of the mirror? Let us consider a ray that strikes
the mirror at B. The point C is the centre of curvature of the mirror (the centre of
the sphere of which the mirror is a part). So, the dashed line CB is equal to  — the radius of
mirror and CB is also normal to the surface at B. Since the angles FCB and CBF must be
equal, the length CF must be equal BF. We assume the mirror is small compared to its
radius of curvature, so the angles are small and the length FB is nearly equal to length FA.
In this approximation, FA=FC. But FA=f and CA=2FA=r. Thus the focal length is half

the radius of curvature f =% : (4-1)

We can say that for an object at infinity the image is located at the focal point of a concave
spherical mirror and its position is given by Eq.4-1.

To find the image for an object OO’ not at infinity we use three particularly simple rays
(see Fig.4-5):
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Ray 1 is going parallel to the axis and therefore it must pass through F.

Ray 2 is passing through F and therefore it must reflect to be parallel to the axis.

Ray 3 is going along a radius of the curvature of the spherical surface and therefore it is
perpendicular to the mirror and will be reflected back.

The point at which these rays cross is the image I'.

Let us calculate the position of the image for a given object.

In Fig.4-6 we assume an arbitrary ray, say OP, leaving a point O on the object. It reflects
from the mirror and passes through point I which will be its image point. We can write:

y+6=180°
and for triangle OIP a+20+6=180°=y+06 .
Thus we have a+2p=y . (a)

65

pp—

i i ol 3 g e A L 9%



d

d,

Figure 4-6

For triangle OCP we can write:
a+e+(180°— B)=180°,
or a+e=p. (b)

From relations (a), (b) we eliminate ¢ and obtain

a+y=2p4.
If @, B,y are small angles, this relation can be written (in radian measure) to be a good
approximation as

s s _2s
—_—— = —
d, d.
If we divide by s and use Eq.4-1 we obtain
1. 1.1 (4-2)
do di f

where d, is the object distance, d is the image distance and  is the radius of curvature of
the mirror. Eq.4-2 is called the mirror equation. This equation gives us a way of
determining the position of the image if the object position and the focal length (or radius
of curvature) of the mirror are given.
The lateral magnification m of a mirror is defined as the height of the image A; divided by
the height A, of the object:

h d.

=L=—-1 4-3
M= (4-3)

where we take the following conventions: if A, is considered positive, #; is positive if
the image is upright and negative if inverted; d; and d, are positive if image and object are
on the reflecting side of the mirror. So, the magnification is positive for an upright image
and negative for an inverted image.

Example: 1.5 cm high object is placed 20 cm from a concave mirror whose radius of
curvature is 30 cm. Calculate the position of the image and its size.
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So, di=60 cm and the image is 60 cm from the mirror on the same side as the object.
The lateral magnification is m= —gg—z -3, so, the height of the image h=mx>h,=

=(-3)*(1.5)= —4.5 cm and the image is inverted.

The analysis used for concave mirror can be applied for convex mirror. The parallel rays
falling on a convex mirror diverge after reflecting and seem to come from point F behind
the mirror. This is called the focal point and its distance from the centre of the mirror

represents the focal length f which is again equal f =—;— (r is the radius of curvature of

the mirror).

h'«/— \f

Figure 4-8

No matter where the object is placed on the reflecting side of the mirror, the image will be

virtual and erect (see Fig.4-8).
The mirror equation Eq.(4-2) and the relation for the magnification Eq.(4-3) are also valid
for convex mirror but the focal length (or the radius of curvature) must be considered

negative.
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Example: A convex car mirror has a radius of curvature of 40 cm. Calculate the location of
the image and its magnification for an object 10 m from the mirror.
Solution: Since we have a convex mirror, its radius of curvature is negative, » = —40 cm,
and its focal length f=-20 c¢m.
From the mirror equation we have

1 sigket 1 1 1 )

—_————=——— = ——m
d f d, -02 10 10

So, d; = —lg(-)— =-0.196 m . The image is virtual one and is located behind the mirror.
The lateral magnification is m = —-gi— =- _01' :)96 =0.0196 , so the image is upright and is

o

reduced by a factor of 51.

We summarise the rules as the sign conventions for applying Eqs.4-2 and 4-3 to concave
and convex mirrors: when the object, image or focal point is on the reflecting side of
the mirror the corresponding distance is considered positive. If any of these points is
behind the mirror its distance must be considered negative. Object and image heights 4,

and A are considered positive or negative depending on the object or image point is above
or below the principal axis.

4.4 Refraction - Snell’s Law

When light passes from one medium into another part of the incident light is reflected at
the boundary and the remaining light passes into the new medium. If a ray of light is
incident at an angle not equal to right angle, the ray is bent as it inters the new medium.
This bending is called refraction.
The angle of refraction depends on the speed of light in the two media and on the incident
angle. Relation between the incident angle and the angle of refraction is known as Snell’s
law or the law of refraction

nsing, =n,sing, . (4-4)
From this law it is clear that the ray bends toward the normal when entering a medium
where the speed of light is less. But if light travels from one medium into a second where
its speed is greater the ray bends away from the normal (as shown in Fig.4-9)

i

normal
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Figure 4-9
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We can also say that if light enters a medium whose index of refraction » is greater (and its
speed less) the ray is bent toward the normal (the angle of refraction is less than incident
angle) but if light enters a medium whose 7 is less (and its speed greater) the ray bends
away from the normal (the angle of refraction is greater than incident angle).

When light passes from one material into a second material where the index of refraction is
less (the speed of light is greater) the light bends away from the normal. At a particular
incident angle the angle of refraction will be 90°. Such the incident angle is called
the critical angle ¢_. From Snell’s law the angle ¢, is given by

n, sing, = n, sin90°

or sing, =22 . (4-5)
n,

n, (ny, <ny)

Figure 4-10

For incident angle greater @, Snell’s law would tell us that sing, is greater than 1. Thus in
this case there is no refracted ray at all and all of the light is reflected. This is called total
reflection.

4.5 Refraction at Spherical Surface
In this chapter we will examine the refraction of rays at the spherical surface of

a transparent material. -

Let n; be the index of refraction of a medium in which an object is located, let n, be
the index of refraction of a transparent material (n2 > n). The radius of curvature of
the spherical boundary is R and its centre of curvature is at point C.

We will show that rays leaving a point O on the object will be focused at a single point 1
(called the image point) if we consider only rays that make a small angle with the axis;

such rays are called paraxial rays.

n,

Figure 4-11
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To do so, we consider a single ray leaving point O and striking the surface at point P

(Fig.4-11). From Snell’s law we can write
msing, =n,sing, .
Assuming all angles ¢, ¢,, @, £ to be small, the Snell’s law holds the form

no, =ne, .
For triangles CPI and COP we can write
IB = ¢2 * }/ H
o =a+p .
Since we consider only paraxial rays, we can use the approximations
ot gk
d > R > }, d >

and the Snell’s law yields
mon m=n
d, d, R
where d, and d; are the object and image distances.

>

(4-6)

Eq.4-6 is called paraxial equation for the spherical refracting surface. It is clear that
the image distance d; , for a given distance d, , does not depend on the angle of a ray.
Hence all paraxial rays meet at the same point I called the image. Eq.4-6 allows us to
calculate the image distance when the object distance and optical parameters (R , m , nz)

are given.

Eq.4-6 was derived for the convex spherical surface. If we make the following conventions

it is also valid for the concave surface:

a) if the surface is convex (the centre of curvature C is on the side of the surface opposite
to that from which light comes) R is positive; for the concave surface (the centre C is

on the same side from which the light comes) R is negative;

b) the image distance is positive if the image is located on the opposite side from where

light comes and negative if on the same side;

¢) the object distance is positive if the object is located on the same side from which light
comes and negative if on the opposite side. By convention given above, for a concave

surface (Fig.4-12) both R and d; are negative; the image is virtual.

)
Figure 4-12
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Example: We look down into 4 m lake. How deep does the lake appear to be? (Fig.4-13)
Solution: The rays come from the object point O on the lake bottom diverge after
refraction and appear to come from the image point L.

If we put d, = 4 m and for a flat surface R =o0, we can use the paraxial equation (4-6).

0

Figure 4-13
Substituting gives equation
133
S s
4 i
4
and hence d=-——=-3m
133

The minus sign tells us the image point I is on the same side of the surface as the object
point and thus the image is virtual. The lake appears to be 3 m deep only.

4.6 Thin Lenses

We assume the lens to be made of glass or transparent material so its index of refraction is
greater than that of the air outside. If the diameter of the lens is small compared to the radii
of curvature of the two lens surface, such the lens is called a thin lens. We distinguish two
type of lenses.

Convex or converging lens:

Rays parallel to the axis converge to a point called the focal point F or we can also say that
the focal point is the image point for an object on the axis at infinity. The distance from F
to the lens is the focal length f (Fig.4-14).

Concave or diverging lens:

This lens makes parallel rays diverge. The focal point F of a diverging lens is defined as
the point from which refracted rays originating from parallel incident rays seem to emerge.
The distance from F to the lens is the focal length £ (Fig.4-15).

For finding the image by ray tracing we use three particular rays as indicated for
converging lens (Fig.4-16) and diverging lens (Fig.4-17).

Ray 1, is parallel to the axis and after refraction by the converging lens it passes through
the focal point F behind the lens.

Ray 2, passes through the focal point F' on the same side of the lens as the object and after
refraction by the lens is parallel to the axis.

Ray 3, is directed toward the centre of the lens and such the ray is not refracted by the lens.
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Figure 4-14
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I
Figure 4-15

In this way we can find the image point for any point on the object and to determine
the complete image of the object. Because the rays actually pass through the image for

the case in Fig.4-16, it is a real image.

A

object 1
= T
. \:\\\
7\"““\,”
image

\

Figure 4-16
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By using the same three rays we can determine the image for a diverging lens as shown in
Fig.4-17.

N
Figure 4-17

Ray 1, which is parallel to the axis after refraction seems to come from the focal point F’
in front of the lens.

Ray 2, which is directed toward the focal point F behind the lens, is refracted parallel.

Ray 3, which is directed toward the centre of the lens is not refracted.

The three refracted rays seem to emerge from a point on the left of the lens that is called
the image. Since the rays do not pass through the image, it is a virtual image.

4.7 Lens Equation

We derive an equation that relates the image distance to the object distance. Let us
consider the lens in Fig.4-18 whose thickness at the centre is 7.

Figure 4-18

We first apply the paraxial equation Eq.(4-6) for the spherical refracting surface to the
front surface of the lens and we have

1 n_n-1

dTR
where R, is the radius of curvature of the front surface, 7 =1 for air and n, =n for
the lens, d, is the object distance and d; is the image distance for the first surface. Both
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distances are measured from the front surface. For the case shown in Fig.4-18, d is
negative — the image is virtual at point O'.
Next we apply the paraxial equation to the second surface. The rays striking the second
surface seem to come from the point O'. Thus, the object distance for the second surface is
d! =—d! +1 (the negative sign is necessary since d; < 0) and the paraxial equation gives

n 15 1=n

-d/+t d R,

1

where R, is the radius of curvature of the second surface (for the case shown in Fig.4-18
R, is negative).
When we ignore the thickness of the lens, we set =0, and after adding last two equations

we have —6—;0—+31i-:(n—1)[}%——é) . 4-7)

This equation relates the object distance d, to the image distance d; (the distance from

the lens of the final image formed by the lens) and to the properties R, R, and n of
the lens. It is valid only for paraxial rays and only if the lens is very thin.
If we consider an object at infinity (do —)00) the image distance equals the focal length

d,;= fand from Eq.4-7 we have
l=(n—1)(i——1—-j . (4-8)

f R R

This is called the lens-maker’s equation. It relates the focal length of any lens to the radii

of curvature of its two surface and its index of refraction.

Note that a radius of curvature is positive if a surface is convex to the incoming light and is

negative if concave. Or, we can say that R>0 if the centre of curvature is on the side of

the lens opposite the light source and R<O if the centre of curvature is on the same side as
the light source.

Note also that if a lens is turned around (so light comes from the opposite direction) R,

and R, exchange roles in Eq.4-8 and they also change sign so the value of f remains

the same. Thus the position of the focal point F is the same on both sides of a lens.

Comparing Eqs.4-7 and 4-8 gives us

1 1 1
—_—t—=—
do di f

This is called the lens equation. For the known focal length of a lens, the image distance

for any object distance can be obtained.

This equation is valid for both converging and diverging lenses and for all object and

image positions if we take the following conventions:

a) the focal length is positive for converging lenses and negative for diverging lenses.
The radius of curvature is positive when light strikes a convex surface and negative
when it strikes a concave surface;

b) the object distance is positive if it is on the side of the lens from which light is coming;

¢) the image distance is positive if it is on the opposite side of the lens from where light is
coming; if it is on the same side, the image distance is negative;
the image distance is positive for a real image and negative for a virtual image;

d) object and image heights are positive for points above the axis and negative for points
below the axis;

(4-9)
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The lateral magnification 7 of a lens is defined as the ratio of the image height hl to

object height A, m= f‘— = —% : (4-10)

For an upright image the magnification is positive and for an inverted image
the magnification is negative.

Example: What are the position and the size of the image of 22.4 cm high object placed
1.5 m from the convex lens of the focal length 50 mm?
Solution: From the lens equation we can write

R E SRl CEELE (R

4 f d, 005 15 15

2

and so d, -—-—15'—95—:0.052 m. The image is placed 5.2 cm behind the lens. Notice that

the image is 2 mm farther from the lens than would be the image for an object at infinity.

The magnification m= —% = —910———:—% =~0.035 ,

o

s0 b =mxh, =(~0.035)x22.4=-0.78 cm and it is inverted.

Example: Where must a small object be placed if concave lens of the focal length
=25 cm is to form a virtual image at distance 20 cm from the lens?
Solution: Since f=-25 cm and d; =-20 cm, we can write

1 1 1 1 1 1 a1
——— cm™,

d f d 25 —20 100
so d, =100 cm and thus the object must be placed at point of 100 cm in front of the lens.

4.8 Simple Magnifier

The magnifying glass or the simple magnifier is used to produce magnified images of
objects. To examine detail on an object, we must bring it up close to eyes to increase
the angle subtended by the object at the eye. The nearest point at which an eye can
accommodate is called the near point. It varies from person to person. As the standard
near point is taken the near point of 25 cm distant. The most distant point that can be
focused by eye is called the far point. For “normal” eye the far point is at infinity.

image
i I
i objectnh .
a)
F
Figure 4-19
2
b) 1
le
“

(25 cm for normal eye)
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In Fig.4-19a we have an object placed at the focal point or at point very close to the focal
point. The converging lens produces a virtual and magnified image which must be located
between the near point (25 cm) and infinity if the eye is to focus on it.

In Fig,4-19b the same object is viewed at the near point with eye only. It is clear that
the angle the object subtends is much larger when the magnifier is used.

The angular magnification M of the lens is defined as the ratio of the angle subtended by
the object using the lens to the angle subtended with the object at the near point:

m=L
y
We now express M in terms of the focal length f of the lens.
First, we will suppose that the image produced by lens is at the near point N=25 c¢m
(Fig.4-19a). Since d, =—N, applying the lens equation yields for d,

- T 01

d, f d f N
hence d, = N/ :
f+N

We see that d < f; (—d—"— N <l).

2

f f+N
Let A be the height of an object, so

B BN
d Nf N
Thus YO NN (4-11)
Y S

If the image is at infinity, the object is at the focal point. In this case 7'2-} , and

the magnification equals M=L- ? . (4-12)
/4

We see that the magnification is greater when the eye is focused at its near point. We also

see that the shorter the focal length of the lens the greater the magnification.

4.9 Telescope

A telescope is used to magnify objects that are very far away. It contains two converging
lenses located at opposite ends of a long tube.

The lens closer to the object is called the objective and forms a real image I; of the object
at its focal point F, (or near it if the object is not at infinity). The second lens is called
the eyepiece. This lens is adjusted in such way for the image I, to be placed between
the eyepiece lens and its focal point F. . In this case the eyepiece produces the magnified
inverted and virtual image Iz , seen by the eye.

The angular magnification of the telescope is defined as

M=
y

¥~ }h— , histhe height of the image I; and £, is the focal length of the objective;

o
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7' :—}1 , f-is the focal length of the eyepiece.

€

Thus M =1fr& . (4-13)

It is clear that to obtain a large magnification the objective should have a long focal length
and the eyepiece a short one.
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Figure 4-20

4.10 Microscope
A microscope is used to view objects that are very close. It also has both objective and
eyepiece.
The object is placed just beyond the objective’s focal point F, . The image I; formed by
the objective lens is real, quite far from the lens and enlarged and is located close
the eyepiece’s focal point F. between the focal point and the eyepiece lens. This image is
magnified by the eyepiece into a very large virtual image I, , seen by the eye.
The total magnification of the microscope is equal to the product of magnifications
produced by both lenses.
According to Eq4-10 for the magnification of a simple lens we can express
the magnification of the image I; due to the objective lens:

VR I et (4-14)

° d, d,

where  is the distance between the lenses (we ignore the minus sign in Eq.4-10 which only
tells us that the image is inverted). The eyepiece acts as a simple magnifier and thus from

Eq.4-12 its magnification equals
M (4-15)




where N=25 cm is the near point for the normal eye.
Hence, the total magnification of the microscope equals

MzMoxMe=l~f°><—N—.
d, 1.

When we consider f, and f. small compared to / , then (/- f,)~1 and when we put

d, ~ f,, we obtain the formula for this magnification in the practical form
IN

M= : (4-16)
1t
We see that large magnification will be obtained when f. and f; are very small.
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Figure 4-21

Example: A microscope consists of 10x eyepiece and 50x objective 18 cm apart.
Calculate:

a) the total magnification,

b) the focal length of each lens,

¢) the position of the object when the final image is focused at infinity.

Solution: M=10x50=500 .

From Eq.4-15 the eyepiece focal lengthis f, = —A—I;I— = % =2.5cm

€

To find £, we first determine d, by solving Eq.4-14 for d,

78




=031cm

g -17f 1825 15(.)5

M 50

From the lens equation we can find now f; :
1 i R 1 1 1 51 &
e S s = - = cm
o odyode dyb=f, 031 2155 153
15.5

So, =——=030cm.
2 51

We see that the object distance d, is very close to f, .

4.11 Lens Aberrations

We have developed a theory of image formation by a thin lens. The obtained results are
based on approximation that all rays make small angles with the axis and we can use
sina~a and tga~a. Because of this approximation we expect deviations from

the simple theory called lens aberrations. There are several types of aberrations.

Figure 4-22

If we consider a point object on the axis of a lens then rays that pass through lens close to
its centre are focused at a different point than rays passing far from its centre. This is called
spherical aberration. The image will not be a point but a very small circle surface.
Spherical aberration is corrected by the use of several lenses in combination.

For object points off the lens axis, rays passing through different parts of the lens cause
spreading of the image that has not shape of the circle. This is called astigmatism.

Figure 4-23

If the light is not monochromatic, there will also be chromatic aberration. This aberration
is due to the variation of index of refraction with wavelength — called dispersion. For
example, blue light is bent more than red light by glass. Thus if white light is incident on
a lens, the different colours are focused at different points and we observe non sharp
coloured image. Chromatic aberration can also be eliminated by the use of two lenses
made of different materials with different indices of refraction.
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