We use the term "ideal" because real gases ¢o not follow Eq. (10-21) precisely,
particulary at high pressures or when the gas is near liquefaction point.

To determine the constant p;VO we must incorporate the effect of the amount or
mass of gas that is present. For Bases it is useful to use instead of mass an amount
of substance the unit of which ie mole. One mole (abbr. mol) is defined as the
amount of substance which contains as many atoms or molecules as there are in 0,012
kg of carovon 12, The number of atoms in one mole is known as Avogadro's nunber NA
and its accepted value is

N, = 6,02214.10%3 mo1™L.

Following Avogadro's hypothesis one moles of gases at the same temperature and pres-
sure occupy the same volumes. Thus for, so called standard conditions, that is To =
= 273,15 K and p, = 1,01325.105 Pa one mol of gas occupies a volume Vm==22,4.163 m%
We can therefore write

p.V p,V
Q9 - 22 n = R,n, (10-22)
To %o
where n represents the number of moles, and the constant
pon
R = -
o

is called the universal gas constant. This constant has the same value for all

gases, namely

1 1

R = 8,314 J.K ~.mol .

.

Substituting Eq. (10-22) into Eq. (10-21) we obtain equation of state of ideal

gas as
pV = nRT. (10-23)

The ideal gas law is an extremely useful tool to calculate the relation between

state variables.

11. KINETIC THEORYX

The concept that matter is made up of atoms which are in continuous random
motion is called the kinetic theory.

4

The earliest and most direct experimental evidence for the reality of atoms is
provided by the quantitative studies of Brow-
nian motion. This motion is nemed after the
English botanist Robert Brown who discovered
in 1827 that pollen suspended in water shows
a continuous random motion, see Fig. 11-1,
when viewed under a microscope.

The suspended particles are extremely
Z:%ggidp large compared to the molecules of the fluid
and asre being continually bombarded on all
DL LYl b L] sides by them. If the particles are suf-

ficiently large and the number of molecules
great, equal numbers of molecules strike the

Figure 11 -1
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particles on all sides at each instant. For emaller particles and fewer molecules
the number of molecules striking various sides of the particle at any instant,being
merely a matter of chance, may not be equael; that is fluctustions occur.

Hence the particle at each instant suffers an unbslanced force causing it to
move this or that way. The particles therefore act just like very large molecules
in the fluid, and their motions should be qualitatively the same as the motions of
the fluid molecules.

Kinetic theory can be also used to explain some properties of liquids and
solids.

We now investigate the properties of a gas from the point of view of kinetic
theory, which is bssed on the laws of classical mechanics. But to apply Newton's
laws to each one of the vast number of molecules in a gas (> 1025 wl) is far beyond
the capability of present computers. Instead we take a statistical epproach and de-
termine averages of certain quantities, and these averages correspond to microscopic
variables.

We make the following assumptions about the molecules in a gas:

1. A gas consists of particles, called molecules.

2. The molecules are in random motion and obey Newton’'s laws of motion.

3. The total number of molecules is large.

4. The volume of the molecules is & negligibly amall fraction of the volume
occupied by the gas.

5. No eppreciable forces act on the molecules except during a collision.

6. Collisions sre elastic and are of negligible duration.

Under these assumptions gases follow the ideal gas law closely, and indeed we shall
refer to such a gas as an ideal gas.

11 -1 Kinetiec Calculation of Pressure

Let us now calculate the pressure of an ideal gas from kinetic theory. For
purposes of argument, we imagine that the molecules are contained in a rectangular
vessel whose ends have area A and whose length ic / as shown Fig. 11-2. The pres-
sure exerted by the gas on the walls of its container is, according to our model,
due to the collisions of the molecules with the walls. Let us focus our attention
on the wall, of area A, at the left end of the container ana exaemine what happens
when one molecule strikes this wall, as shown in Fig. 11-3. This molecule exerts a
force on the wall aﬁd the wall exerts an equal and opposite force back on the mole-
cule. The magnitude of this force, according to Newton s second law, is equal to

Z
At I \ <
i

Figure 11-2 Figure 11-3




the molecule’s rate of change of momentum, F = dp/dt. Assuming the collision is
elastic, only the =x component of the molecule s momentum chenges, and it changes
from - mv (it is moving in the negative x direction) to + mv_. Thus the change
in momentum, A(mv), which is the final momentum minus the initial momentum, is
Amv) = mv, - (-mv,) = 2mv
for one collision. This molecule will meke many collisions with the wall, each
separated by a time At, which is the time it takes the molecule to travel across
the box and back sgain, a distance equal to 2/, Thus 2/ = VXZXt or At = 2[/vx.
The time At between collisions is very small so the number of collisions per second
is very large. Thus the average force - averaged over many collisions - will be
equal to the force exerted during one collision divided by the time between col-
lisions (Newton’s second law):

Aav) 2mvx mvi
F = = = —= due to one molecule

At 2u/v, e

During its passage back and forth across the container, the molecule may collide
with the tops and sides of the container, but this does not elter its x component
of momentum and thus does not alter our result. It may also collide with other mole-
culeg, which may change its Ve However, any loss (or gain) of momentum is acquired
by the other molecule, and because we will sum over all the molecules in the end,this
effect will be included. So our result above is not altered.

Of course the actual force due to one molecule is intermittent, but because a
huge number of molecules are striking the wall per second, the force is pretty steady.
To calculate the force due to all the molecules in the box, we have to add the con-
tributions of each. Thus the average net force on the wall is

= m_ .2 2 2
F = ~ (Vxl + Vo toeee ¥ va) .

where v, Deans v, for particle number 1 (and so on) and the sum extends over the
total of N molecules. Now the average value of the square of the x component of

velocity is

—_ 2 2 2
Vel t Vg toeee TV

v = — .

N

Thus we can write the average force as

_ m_ .2
F = " va E

We know that the square of any vector is equsl to the sum of the squares of its com-

ponents. Thus v2 = vs + v§ + vi for any velocity v. Taking averages we obtain
v o= Vo4 v 4 v .
X Yy z

Since the velocities of the molecules in our gas are assumed to be random, there is

no preference for one direction or another. Hence

42 ¥2
x ~ 'y Vz

<
1
<
l

and therefore

w2 - ad

v = 3vx .

We substitute this into the equation for the average force F :
v2

= I g
F = 7 N 3 -

The pressure on the wall is then
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P = '3- VV ’ (11-1)

where V = AZ is the volume of the container. This is the result we were secking, the
pressure in a gas expressed in terms of molecular properties.

Equation (11-1) can be rewritten in a clearer form by multiplying both sides
by V and slightly reerranging the right side:

o= % NG avd) . (11-2)

The quantity % nv? is the average kinetic energy of the molecules in the gas.

11 -2 Kinetic Interpretation of Temperature

If we compare Eq. (11-2) with the ideal gas law, Eq. (10-23), we obtain:

2 1 2 -
5 N(z mv®) = nRT .
Taking into account that
g =K, is Avogadro s number
and —%— = k is Boltzmann s constent we have:
A —

% avl = % kT . (11-3)

This equation tells us that

the average translational kinetic energy of molecules in a gas
is directly proportional to the absolute temperature.

The higher the temperature, according to kinetic theory, the faster the molecules

are moving on the average. This relation is one of the triumphs of the kinetic theory.
Equation (11-3) implies that as the temperature approaches absolute zero the kinetic
energy of molecules approaches zero. Modern quantum theory, however, tells us this is
not quite so; instead, &s absolute zero is approached, the kinetic energy approaches
a very small nonzero minimum value. Even though all real gases become liguid or solid
above O K, molecular motion does not cease, even at abgolute zero.

We can use Eq. (11-3) to calculate how fast molecules are moving on the average.
Notice that the averege in Eqs (11-1) through (11-3) is over the square of the velo-
city. The square root of v2 ie called the root-mean-square velocity, Vo (since we
are taking the square root of the mean of the square of the velocity):

vs=\1?2=\[_3ﬁ—k;. (11-4)

rm

The mean speed, Vv, is the average of the magnitudes of the speeds themselves; v 1is
generally not equal to Vrms® The difference between the mean speed and the rms speed
can be seen in the following sections.

11 -3 Dalton s Law

If the molecules of the gas in the container are of several different kinds
with respective masses mj and number of molecules Nj we can write Eq. (11-1) in

the following way:
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From Eq. (11-5) we have at once the important result that, according to our theory,
the pressure of a mixture of two or more ideal gases is simply the sum of the pres-
sures which they would exert if each occupied the same volume by itself, or

P=pp *Py*+ees +D5 (11-6)

Eq. (11-6) is called Dalton’s Law. This lew is known experimentally to be true at
sufficiently low densities; the departures from this law are becoming noticeable in
ordinary gases only when under considerable pressure.

11 -4 Distribution of Molecular Speeds

The molecules in a gas are agsumed to be in random motion, which means that
many molecules have speeds less than the average speed and others have speeds
greater than the average. In 1859, James Clerk Maxwell (1831 - 1879) worked out a
formula for the most probable distribution of speeds in a gas containing N molecules

1 mv2
flv) = 4er~< - )3/2 vZe 2K (11-7)
2TCkT

f(v) 4is called the Maxwell distribution of speeds, and is plotted in Fig. 11-4. The
quantity f(v)dv represents the number of molecules that have speed between v and

v + dv. Notice that f(v) does not give the number of molecules with speed v; f(v)
must be multiplied by dv to give the number of molecules (clearly the number of
molecules must depend on the "width" or "range" of velocities, dv). In the formula
for fiv), m is the mass of a single molecule, T is the absolute temperature, and k
is Boltzmenn’s constant. Since N is the total number of molecules in the gas, when
we sum over all the molecules in the gas we must get N; thus we must have

g
ff(v) dv. = N. ' (11-8)
[¢]
6,;\ -
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Figure 11-4 ‘Figure 11-5

The Maxwell distribution for a given gas depends only on the absolute tempera-
ture. Fig. 11-5 shows the distributions for two different temperatures. Just as Vv,
increases with temperature, so the whole distribution curve shifts to the right at
higher temperatures.

The distribution of molecules in & liquid also resembles the curve of Fig. 11-4.
This explains why some molecules in a liquid (the fast ones) can escape through the
surface (evaporate) at temperatures well below the normalﬂboiling point.
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Example : Determine formulas for (a) the average speed, Vv, and (b) the most
probable speed, vp, of molecules in an idesl gas at temperature T.

Solution: (a) The average value of any quantity is found by multiplying each pos-
sible value of that quantity (say, speed) by the number of molecules that have
that value, and then summing all these numbers and dividing by N (the total
number). We are given a continuous distribution of speeds (Eq. 11-7) so the sum
becomes an integral over the product of v and the number f(v) dv that have

speed Vv : o0 2
) f vf(v) av o 2 .. .lmv
¥ =L = 4T ') f v e 2 kT dv .
N 2T kT

0
We can look up the definite integral in the tablées, or integrate by parts, and

obtain %
= 4x<——-—m )(2—1—“%2) =\'§ K o 60\]gg
2T KT o T m U m T

(b) The most probable speed is that speed which occurs more than any
others, and thus is that speed where f(v) has its maximun value. Since
df(v)/dv = O at this point, we have

3, w2 5 _md
dftv) . M( m )<2ve 2T _2mvd AT ),
av 2 KT 2 kT

Solving for v , we get

He

_ \/21:T \[xz
Vp - m 1'41 m 3

(Another solution is v = 0, but this corresponds to & minimum, not a maximum.)

In summary,

kT
1,41\/;;
\’kT
1,60\ &=
kT
1,73 \/F

C] e

L1 ]
"
)
Tl
[[]

He

E‘E

These are all indicated in Fig. 11-4.

11 -5 Mean Free Path

Between successive collisions a
molecule in a gas moves with constant
speed along a straight line.The average
distance between such succegsivz col-
lisiong is called the mean free path.

If we were to follow the path of
a particular molecule, we would expect
to see it follow a zigzag path as shown
in Fig. 11-6.

Let ues determine the mean free
path. '

Figure 11 -6
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(’:‘\ Suppose our gas is made up of mole-
N

2r o = cules which are hard spheres of radius r.
N (\_/) i A collision will occur whenever the centers

k Y S TS S of two molecules come within a distance 2r
<:::>\ of one another. Let us follow a molecule as

N\ % it traces a straight-line path. In Fig.ll-7
wVAt the dashed line represents the path of our
particle if it made no collisions. Also
shown is & cylinder of radius 2r, if the
center of another molecule lies within this
cylinder, a collision will occur. (Of
course, when a collision occurs the particle’s path would change direction, as would
our imagined cylinder, but our result won't be altered by unbending a zigzag cylinder
into a straight one for purposes of calculation.,) Assume our molecule is an average
one, moving at the mean speed in the gas, v. For the moment, let us assume that the
other molecules are not moving, and that the concentration of molecules (number per
unit volume) is No' Then the number of molecules whose center lies within the
cylinder of Fig. 11-7 is N, times the volume of this cylinder, and this also repre-
sents the number of collisions that will occur. In & time /A1, our molecule travels
a distance vAt, so the length of the cylinder is vAt and its volume is

T(2r)%% At. Hence the number of collisions that occur in a time At is

N T@r)? FAL .

Figure 11 -7

We define the mean free path A as the average distance between two successive col-
lisions. This distance is equal to the distance traveled (vAt) in time At
divided by the nuamber of collisions made in time At :

A = VAL = i_ . (11-9)
N, Ti2r)® FAt 4 Jrero

Thus we see that A is inversely proportional to the cross-sectional area
(= Tr2) of the molecules and to their concentration No. However Eq. (11-9) is not
fully correct since we assumed the other molecules are all at rest. In fact they
are moving, and the number of collisions in time At must depend on the relative
speed of the colliding molecules, rather than on v. Hence the number of collisiong
per second is

2
N, Ti2r) Vg AN N

1
where Viel is the average relative speed of colliding molecules. 4 careful calcula-~
tion shows that for iaxwellian distribution of speeds

Vrel © VEiG

Hence the mean free path is
1

— {11-10)
4T\ 2.1 .No

11 -6 Equipertition of Energy

Let us now find the total energy of & gas containing a large number of mole-
cules. The energy of such a gas, regarded as the internal energy of its molecules,
can be divided into a number of different parts, as follows:

a) translational kinetic energy,

b) rotational kinetic energy,

- 91 -




¢) energy of vibrations of the atoms in a molecule,
d) mutusl potential energy of the molecules as a whole.

At low densities the mutual energy, type d, becomes negligible. The transla-
tional kinetic energy of the molecules moving as wholes is likewise quite distinct
at low densities from the other forms. We can therefore express the kinetic energy
of a gas containing N molecules of the seme mass m as

N N
1 2 1 2
E, = 2,W, = %m 22 vi = ZNm.v : (11-11
k inn * 27 47 1 2 rms
For the root-meen-squere velocity we can use Eq. (11-4) so that we have
_ 1 kT _ - -
E, = M3 o 3wt = 2 urr. (11-12)

We can see that internal energy of a gas depends only on the temperature and
distributes itself in equal shares to each of the independent ways in which the
molecules can absorb energy. This theorem is celled the equipartition of energy and
was deduced by Clerk Maxwell. Each such independent mode of energy absorption is
called a degree of freedom.

From Eq. (11-12) we can see that the kinetic energy of translation per one

mole of gaseous molecules is

= &
_Ek 5 RT .
The kinetic energy of translation per mole is the sum of three terms, namely
L ar o2 . 1, 2. 1, .2
5 M Ve i > M vy ; 5 M LA

The theorem of equipartition requires that each such term contribute the came amount
to the total energy per mole, or % RT per degree of freedom.

We can therefore say that the average kinetic energy per one degree of freedom
is:

- for one mole of gas % RT (11-13)
- for one particle % kT (11-14)

For monoatomic gas with three degrees of freedom the average kinetic energy of
one particle is
Ey 2 kI (11-15)

or for one mole of gas

B, = 2 RT (11-16)
<

For a diatomic gas we can think of each molecule as two spheres joined by a
rigid rod. Such a molecule can rotate about any one of three mutually perpendicular
exes. However the moment of inertia about an axis along the rigid rod should be
negligible compared to that about axes perpendicular to the rod, so that the rotat-
ional energy should consist of only two terms.Each rotational degree of freedom is
required by equipartition to contribute the same energy as each translational degree,
so that a diatomic gas having both rotational and translational motion will have
five degrees of freedom and therefore its aversge kinetic energy per one mole is

E, = $RI (11-17)

For polyatomic gases, each molecule contains three or more spheres {atoms)
joined together by rods in our model, so that the molecule is capable of rotating
energetically about each of three mutually perpendicular axes. Hence, a polyatomic
gas having both rotational and translationsal motion will have six degrees of free-
dom, therefore its average kinetic energy per one mole is

E, = 3R {11-18)
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