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Electric Current 
Valence electrons in an atom are the outermost electrons, the least 
bound to the central positive charge. 

In a solid substance, there is often a crystalline structure of the atoms 
or molecules, the atoms or molecules form a lattice in space. 

Valence electrons are free to move within the lattice, so the motion of 
such electrons without external electric field is similar to the motion of 
molecules in a gas.  

If we connect a battery to the metallic conductor, an electric field 𝐸𝐸 will 
be set up in the conductor.  

This field will act on the electrons and 
will cause their motion in the direction of 
-𝐸𝐸. An electric current is established.   
The ability of conductors to carry an 
electric current is called conduction of 
free electrons.  

𝐸𝐸 = 0 

𝐸𝐸 ≠ 0 



Electric Current 
The average electric current in a conductor is defined as QI

t
∆

=
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where ΔQ is the net amount of charge that passes through a cross 
section of the conductor during the time interval Δt.  

If the current is not constant in time, we can define instantaneous 
current as a limit 

0
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The unit of electric current 
is Ampere [A] 

We could also write 
inversely  
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Current Density 
To describe motion of charges it the 3D volume, we need another 
quantity, called current density 𝑗𝑗. Unit of the current density is [A/m2]. 
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The current passing 
through an area S is  

S
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Let us suppose that the average motion of 
charges is a drift with velocity 𝑣⃗𝑣 passing 
through a surface element ΔS. The charge 
ΔQ passing through ΔS in a time Δt is equal 
to the charge contained in a prism of the 
volume ΔS·v·Δt. 



Current Density 

If we multiply the volume of the prism by the 
charge volume density ρV, we obtain 

VQ v t Sρ∆ = ⋅ ⋅∆ ∆

The charge per unit volume is an electric 
current, so by introducing differentials 
instead of deltas we obtain 
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dQdI v dS v dS
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Considering  we can write dI j dS= ⋅
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
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If there are n charges in the unit volume, each with unit 
charge e and they are moving with mean velocity 𝑣⃗𝑣, we 
can rewrite the formula for the current density to 

j e n v= ⋅ ⋅






Current Density 

The current I out of a closed surface represents 
the rate at which the charge leaves the volume 
V enclosed by S. Since the charge cannot be 
created or destroyed the amount of charge 
inside V must decrease. We can write the law 
of conservation of charge inside Qin. 
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No charge can flow away from a place without diminishing the amount 
of charge that is there.  

By shrinking down the volume 
around a point (x,y,z) we obtain 

Vdiv j
t
ρ∂

= −
∂





First Kirchhoff’s Law 

Let us suppose stationary case when a volume 
charge density is constant. The law of charge 
conservation will change to 

0
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This equation can be rewritten according to particular currents flowing 
through areas S1, S2, … Sn into the volume surrounded by S.  
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The first Kirchhoff’s law can be formulated: the algebraic sum of all 
currents into the junction point must be zero.   



Ohm’s Law, Resistance, Conductivity 

If we want to establish an electric current in a circuit, we need a 
potential difference. G. S. Ohm established experimentally that the 
current I in metal wire is proportional to the potential difference V.  

VI or V I R
R

= =
where R is the resistance of the wire. 

Unit of R is Ohm [Ω] 

The Ohm’s law expressed in words: current through a metal conductor 
is proportional to the applied voltage. This means that R is considered 
a constant, which is valid in case of metal wires or resistors, but we 
cannot use the Ohm’s law for semiconductor elements, light bulbs and 
other devices, which are called nonohmic or nonlinear.  

Another experimental finding is that the resistance of uniform metal 
wire is directly proportional to its length l and inversely proportional to 
its cross-sectional area S.  

lR
S

ρ= where ρ is resistivity in [Ω·m] and it depends on the 
material used 



Ohm’s Law, Resistance, Conductivity 

The resistivity depends on the material used 
and also on the temperature.  0 (1 )T Tρ ρ α= + ∆

where ρT is resistivity at temperature T, ρ0 is resistivity at a standard 
temperature T0, and α [K-1] is the temperature coefficient of resistivity.  

The reciprocal value of resistivity is called 
conductivity γ 

1γ
ρ

= 1
m

 
 Ω⋅ 

Let us deduce the Ohm’s law in differential form now. We will start with  

V E l= ⋅
the formula for electric field E in the wire of 
length l and potential difference V at its ends.   

If we substitute for V from the Ohm’s law RI E l= ⋅

Now we substitute for R with resistivity 
formula and realize that I=j·S 

l j S E l
S

ρ = ⋅

The Ohm’s law in differential form  1 orj E j Eγ
ρ

= =
 

 



Properties of Conducting Materials 

Material Resistivity ρ [μΩ·cm] Temp. coef α [mK-1] 
Silver 1.63 3.8 
Copper 1.75 6.8 
Gold  2.35 3.7 
Aluminum 2.83 4.9 
Zinc 5.9 3.8 
Brass 7.5 2-7 
Iron 9.8 6 
Platinum 10.9 3.9 
Carbon 33-185 -6 to +1.2 
Tin 11.5 4.2 
Constantan (Cu+Ni+Mn) 49 -0,03 



Electromotive Force 

Let us suppose that we have an electric circuit 
containing a seat of emf ε (e.g. a wire moving in 
magnetic field). The flow of charges can be 
described by the Ohm’s law  

( )S Ij E E Eγ γ= = +
  



where ES is an electric field causing the flow of 
charges outside the seat in the part m and EI is 
electric field inside the seat – part n.  

After small arrangements 
we obtain 
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If we now realize that the motion of charges in the part n is influenced 
both by ES and EI, while in the part m the value of EI =0, we can 
rewrite the right side   
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Electromotive Force 

Since we know that 0S
m n

E dl
+

=∫






we can simplify the 
equation [1] to  
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where the term  is the  electromotive 
force 

Now we can separate also the left part 
of the equation [1] m n m n
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Realizing that vectors 𝚥𝚥 and d𝑙𝑙 are 
colinear and  
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Electromotive Force 

Similarly we could deduce 

The equation [1] can be then rewritten to  ( )iI R Rε = +

so i
m n

j jdl dl IR IR
γ γ
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We can imagine it as a simple electric 
circuit with voltage source ε, internal 
resistance Ri and load R. The emf seat 
includes both the source and Ri. The 
voltage on its terminals KL can be written 
as 

KL iV I Rε= −

Example: ε=10V, Ri=0.5 Ω, R=5Ω.  1.82A
i

I
R R
ε

= =
+

9.1VKL iV I Rε= − =



Second Kirchhoff’s Law 

IE dl E dl⋅ = ⋅∫ ∫
 

 

 

We already 
know that  

We can now rewrite integrals on both sides.  
B C D A
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We have a closed electric circuit consisting of 
junctions A-B-C-D and branches connecting 
them consisting of resistors and emf forces.  
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Second Kirchhoff’s Law 
Both sides of the equation [2] can be simplified into the general form 
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Where n is the number of branches.  

The second Kirchhoff’s law can be formulated: the algebraic sum of 
changes in potential around any closed path of the circuit is zero.   



Energy Transfers in an Electric Circuit 

ε 

K 

L 

I We have a simple circuit consisting of battery 
B with its internal resistance Ri and between 
its terminals KL we have a resistor R as a 
load. The electric current flowing through the 
circuit is I. The elementary energy 
transformed (consumed) by the resistor R is 

V 

dU dq V= ⋅ where V is the voltage on the resistor R and dq is 
elementary charge passing through the R.  

If dt is elementary time necessary for passing the dq through the R, 
then the power consumed by the R is 

dU dqP V I V
dt dt

= = = Using the Ohm’s law we can rewrite the 
formula to the form of Joule’s law.  

P I IR= 2P I R=
2VP

R
= [ ]W



Joule’s Law From the Microscopic Point of View 
We have a conductor connected to a battery. 
The electric field 𝐸𝐸  acts on the charged 
particles so that they move with constant 
velocity 𝑣⃗𝑣 . Now we choose an elementary 
volume dV=dS·dl. We can define the power 
density  

3W/mdPp
dV

 =  

From the mechanics and 
electrostatics we know that P F v= ⋅



 F Q E= ⋅
 

and 

( ) ( )d dp F v Q E v
dV dV

= ⋅ = ⋅ ⋅
 

 

so 

For the stationary state we can consider 𝐸𝐸 and 𝑣⃗𝑣 constant, so 

V
dQp E v E v
dV

ρ= ⋅ = ⋅ ⋅
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where ρV is volume charge density  



j e n v= ⋅ ⋅


From the current density chapter 
we know that  

Joule’s Law From the Microscopic Point of View 

V e nρ = ⋅ and 

We can finally write for the power density  

where n is number of charges in the volume dV and e is elementary 
charge.  

Vp E v E v e nρ= ⋅ ⋅ = ⋅ ⋅ ⋅
 

  p E j= ⋅



The total energy used by a device during time t can be written as 

0

t

W P dt= ⋅∫

This relation is also called Joule’s law from the microscopic point of 
view.  



Summary – what we have learnt 

Relations between electric charge 
and current 

Current density relations 

First Kirchhoff’s law 

Second Kirchhoff’s law 

Resistivity 

Joule’s law 

Ohm’s law 
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Maxwell’s Equations – integral form 

1. Ampere’s law 

2. Faraday’s law 

3. Gauss’s law of electricity 

4. Gauss’s law of magnetism 

l S
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Constitutive relations 
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The term          in the Ampere’s law represents a displacement current.  
D
t

∂
∂





Maxwell’s Equations – differential form 
To be able to transform Maxwell’s equation into the differential form, we 
need two fundamental theorems of the vector calculus.  

Gauss’s theorem  
(divergence theorem) 

( )
S V

F dS F dV⋅ = ∇ ⋅∫∫ ∫∫∫
 



Stokes’s theorem ( )
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  



Explanation of symbols 
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∂ ∂ ∂

∇ = + +
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
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F∇⋅


F∇×


Nabla (or del) operator  

Divergence of the vector 𝐹⃗𝐹 

Curl of the vector 𝐹⃗𝐹 



Maxwell’s Equations – differential form 
1. Transformation of the Ampere’s 
law 

l S

DH dl j dS
t

 ∂
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Using the Stokes’s 
theorem we have ( )
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2. Transformation of the Faraday’s 
law 
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dE dl B dS
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Maxwell’s Equations – differential form 
3. Transformation of the Gauss’s 
law of electricity 

Using the Gauss’s 
theorem we have 

D ρ∇⋅ =


4. Transformation of the Gauss’s 
law of magnetism 

0B∇⋅ =
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

Using the Gauss’s 
theorem we have 



Maxwell’s Equations in both forms 

l S
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t
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∂
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Integral Differential 
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